Cho hình vg ABCD , gọi M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA thì tứ giác MNPQ là .....
( giúp mik vớiii )
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Khi đó tứ giác MNPQ là hình gì? Tại sao?
Xét ΔABD có : M là trung điểm AB (gt)
Q là trung điểm AD (gt)
=> MQ là đường trung bình của ΔABD
=> MQ // BD ; MQ = 1/2 BD (1)
Xét ΔCBD có : N là trung điểm BC (gt)
P là trung điểm CD (gt)
=> NP là đường trung bình của ΔCBD
=> NP // BD ; NP = 1/2 BD (2)
Từ (1) và (2) => MQ // NP; MQ = NP
Xét tứ giác MNPQ có : MQ // NP (cmt)
MQ = NP (cmt)
=> Tứ giác MNPQ là hình bình hành
cho tứ giác abcd gọi m ,n,p,q lần lượt là trung điểm của ab,bc,cd và da chứng minh tứ giác mnpq là hình bình hành
Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
Cho hình ABCD, gọi M, N, P, Q lần lượt là trung điểm Của AB, BC, CD, DA a, Tứ Giác MNPQ là hình gì? Vì sao? b, Cần thêm điều kiện gì của AB và CD để tứ giác MNPQ là hình thoi
a: Xét ΔBAC có BM/BA=BN/BC
nên MN//AC và MN=AC/2
Xét ΔDAC có DP/DC=DQ/DA
nên PQ//AC và PQ=AC/2
=>MN//PQ và MN=PQ
=>MNPQ là hình bình hành
b: Để MNPQ là hình thoi thì MN=MQ
=>AC=BD
cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là trung điểm của các cạnh AB,BC,CD,DA.
a, tứ giác MNPQ là hình gì ? Vì sao ?
b,Tứ giác ABCD cần có điều kiện nào thì MNPQ là hình chữ nhật
Answer:
Hình bạn tự vẽ.
a, Ta xét tam giác ABC
\(AM=MB=\frac{1}{2}AB\)
\(BN=NC=\frac{1}{2}BC\)
\(\Rightarrow MN\) là đường trung bình của tam giác ABC
\(\Rightarrow\hept{\begin{cases}MN=\frac{1}{2}BC\\MN//AC\end{cases}}\)
Chứng minh tương tự, ta được
\(NP;PQ;QM\) lần lượt là đường trung bình của tam giác BCD; tam giác ACD; tam giác ABD
Ý này nếu trình bày trong vở viết bạn gộp tất cả vào một cái ngoặc "và" nhé.
\(NP=\frac{1}{2}BD\)
\(NP//BD\)
\(PQ=\frac{1}{2}AC\)
\(PQ//AC\)
\(QM=\frac{1}{2}BD\)
\(QM//BD\)
Do vậy: \(\hept{\begin{cases}MN//PQ;MN=PQ\\NP//QM;NP=QM\end{cases}}\)
Vậy MNPQ là hình bình hành
b, MNPQ là hình chữ nhật
\(\Rightarrow\widehat{MNP}=90^o\)
\(\Rightarrow MN\perp NP\)
Mà \(\hept{\begin{cases}MN//AC\\NP//BD\end{cases}}\Rightarrow AC\perp BD\)
Vậy tứ giác ABCD có hai đường chéo vuông góc thì MNPQ là hình chữ nhật
Câu 1: Cho tứ giác ABCD, gọi M ,N ,P ,Q lần lượt là trung điểm các cạnh AB, BC, CD, DA.
a) Tứ giác MNPQ là hình gì? Vì sao?
b) Tứ giác ABCD có thêm điều kiện gì thì tứ giác MNPQ là hình thoi?
cho tứ giác ABCD. Gọi M,N,P.Q lần lượt là trung điểm của AB,BC,CD,DA.
a)Tứ giác MNPQ là hình gì
b)Tìm điều kiện của tứ giác ABCD để tứ giác MNPQ là hình chữ nhật
Cho tứ giác ABCD gọi M ,N ,P, Q lần lượt là trung điểm của AB ,BC ,CD, DA a) Chứng minh tứ giác MNPQ là hình chữ nhật b) tính diện tích tứ giác MNPQ biết AC = 12 cm ,BC = 10 cm
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
Cho tứ giác ABCD . Gọi M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA
Hỏi tứ giác MNPQ là hình gì ?
Giúp mình nha cám ơn, Vẽ hình luôn nha mấy bạn
vì dễ quá nên không ai trả lời :D, bạn tự vẽ hình nhé
xét tam giác ADB có Q trung điểm AD, M trung điểm AB => MQ là đường trung bình tam giác ADB => MQ // BD và MQ = 1/2 BD.(1)
xét tam giác BCD có N trung điểm BC , P trung điểm CD => MP là đường trung bình tam giác BCD => NP//BD, NP= 1/2 BD(2)
(1)(2) => MQ // NP(vì cùng //BD) và MQ = NP (vì cùng = 1/2BD) => MQPN là hình bình hành
Cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là trung điểm của AB, BC, CD, và DA. C/m rằng MNPQ là hình bình hành.
Xét tứ giác ABD có : AQ=QD ;AM=MB
suy ra MQ là đường trung bình của tam giác ABD
vậy MQ= 1/2 BD và MQ song song với BD*
Xét tam giác CDB có : PD=PC;NC=NB
suy ra NP là đường trung bình của tam giác CDB
vậy NP song song với BD và NP =1/2 BD**
từ *và ** suy ra MQ song song với MP
MQ =MP
vậy tứ giác MNPQ là HBH
nối 2 đường chéo: Q tđ AD , P tđ DC => QP đường trung bình tam giác ADC=> QP // và = AC (1)
A tđ AB,N tđ BC => MN đường trung bình tam giác ABC => MN//=1/2 AC(2)
1 và 2 => QP song song và bằng MN => tứ giác QMNP hình bình hành
Nối AC ta có:
MB = MA (gt)
NB = NC (gt)
Suy ra: MN là đường trung bình của tam giác ABC
Nên MN // AC , MN = 1/2AC (1)
Tương tự: PQ là đường trung bình của tam giác ADC
Nên PQ // AC và PQ = 1/2AC (2)
Từ (1) và (2) suy ra: MN // PQ (cùng // AC)
MN = PQ (cùng = 1/2AC)
Do đó: Tứ giác MNPQ là hình bình hành ( một cặp cạnh đối vừa // vừa bằng nhau)