Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Hải Đăng
Xem chi tiết
T.Ps
23 tháng 6 2019 lúc 21:11

#)Giải :

Từ giả thiết ta suy ra được các tích x1.x2+x2.x3+...+xn.x1 chỉ nhận 1 trong 2 giá trị là 1 và (-1)

Mà x1.x2+x2.x3+...+xn.x1 = 0 => n = 2m

Đồng thời có m số hạng = 1, m số hạng = -1

Ta nhận thấy (x1x2)+(x2x3)...(xnx1) = x21.x22.....x2= 1 

=> Số các số hạng = -1 phải là số chẵn => m = 2k

=> n = 4k => n chia hết cho 4

Không Tên
Xem chi tiết
Nguyễn Đức Nam
22 tháng 7 2020 lúc 20:01

dễ vãi luôn ai thấy đúng cho

Khách vãng lai đã xóa
Tran Le Khanh Linh
22 tháng 7 2020 lúc 20:05

Với n=2

=> \(x_1+\frac{1}{x_1}=x_2+\frac{1}{x_2}\)

\(\Rightarrow x_1-x_2=\frac{1}{x_1}-\frac{1}{x_2}\)

\(\Rightarrow\left(x_1-x_2\right)-\frac{x_1-x_2}{x_1x_2}=0\)

\(\Rightarrow\left(x_1-x_2\right)\left(1-\frac{1}{x_1x_2}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x_1-x_2=0\\1-\frac{1}{x_1x_2}=0\end{cases}\Rightarrow\orbr{\begin{cases}x_1=x_2\\x_1x_2=1\end{cases}}}\)

*) n=k

=> \(x_1+\frac{1}{x_1}=x_2+\frac{1}{x_2}=...=x_k+\frac{1}{x_k}\)

thì \(x_1=x_2=x_3=...=x_k\)hoặc \(\left|x_1x_2...x_k\right|=0\)

Với n=k+1

=> \(x_1+\frac{1}{x_1}=x_2+\frac{1}{x_2}=x_3+\frac{1}{x_3}=...x_{k+1}+\frac{1}{x_1}\)

=> \(x_1+\frac{1}{x_2}=x_2+\frac{1}{x_3}=....=x_k+\frac{1}{x_{k+1}}=x_{k+1}+\frac{1}{x_1}\)

\(\Rightarrow x_{k-1}+\frac{1}{x_k}=x_k+\frac{1}{x_1}=x_{k+1}+\frac{1}{x_1}\)

\(\Rightarrow x_k-x_{k+1}=0\)

\(\Rightarrow x_k=x_{k+1}\)

\(\Rightarrow x_1=x_2=...=x_k=x_{k+1}\)

Khách vãng lai đã xóa
Lãnh Hàn Thiên Kinz
22 tháng 7 2020 lúc 20:21

bạn Nguyễn Đức Nam cho mình hỏi, bạn nói bài dễ thì sao bạn ko làm đi, bài này chỉ dễ với bạn thôi chứ rất khó với nhiều người, ng.ta ko bt làm mới đăng bài lên mà, bạn ko bt làm thì đừng cmt như thật nhé

Khách vãng lai đã xóa
Dưa Hấu
Xem chi tiết
Nam Hải
12 tháng 3 lúc 22:58

Nhận xét rằng với mọi số nguyên \(x\), định lý Fermat nhỏ cho ta: \(x^{2017}\equiv x\) (mod \(2017\))

nên với mỗi nghiệm \(x_i\) ta có: \(x_i^{2017}+ax_i^2+bx_i+c\equiv ax_i^2+\left(b+1\right)x_i+c\) (mod \(2017\))

\(\Rightarrow ax_i^2+\left(b+1\right)x_i+c\equiv0\) (mod \(2017\))

Xét \(x_1\) có: \(ax_1^2+\left(b+1\right)x_1+c\equiv0\) (mod \(2017\)) (1)

Xét \(x_2\) có: \(ax_2^2+\left(b+1\right)x_2+c\equiv0\) (mod \(2017\)) (2)

Từ (1), (2) \(\Rightarrow a\left(x_1^2-x_2^2\right)+\left(b+1\right)\left(x_1-x_2\right)⋮2017\)

\(\Rightarrow a\left(x_1-x_2\right)\left(x_1+x_2\right)+\left(b+1\right)\left(x_1-x_2\right)⋮2017\)

\(\Rightarrow\left(x_1-x_2\right)\left[a\left(x_1+x_2\right)+\left(b+1\right)\right]⋮2017\)

Mà \(\left(x_1-x_2\right)\left(x_2-x_3\right)\left(x_3-x_1\right)⋮̸2017\),  \(\Rightarrow\left\{{}\begin{matrix}x_1-x_2⋮̸2017\\x_2-x_3⋮̸2017\\x_1-x_3⋮̸2017\end{matrix}\right.\)

\(\Rightarrow a\left(x_1+x_2\right)+\left(b+1\right)⋮2017\) (3) (do \(2017\) là số nguyên tố)

Tương tự với \(x_1\) và \(x_3\)\(\Rightarrow a\left(x_1+x_3\right)+\left(b+1\right)⋮2017\) (4)

Từ (3), (4) \(\Rightarrow a\left(x_2-x_3\right)⋮2017\)

Mà \(x_2-x_3⋮̸2017\Rightarrow a⋮2017\) (do \(2017\) là số nguyên tố) (5)

Từ (3), (5) \(\Rightarrow b+1⋮2017\) (6)

Từ (1), (5), (6) \(\Rightarrow c⋮2017\) (7)

Từ (5), (6), (7) \(\Rightarrow a+b+c+1⋮2017\) (đpcm)

 

 

Lam Tinh Tuyết
Xem chi tiết
Akai Haruma
4 tháng 7 2018 lúc 14:23

Lời giải:

Nếu $x_1,x_2$ là nghiệm của pt trên thì theo định lý Viete ta có:

\(\left\{\begin{matrix} x_1+x_2=\frac{2(m-1)}{m}\\ x_1x_2=\frac{m}{m}=1\end{matrix}\right.\)

Nếu \(x_1^2+x_2^2=2\)

\(\Leftrightarrow x_1^2+x_2^2+2x_1x_2-2x_1x_2=2\)

\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2=2\Leftrightarrow \frac{4(m-1)^2}{m^2}-2=2\)

\(\Leftrightarrow \frac{4(m-1)^2}{m^2}=4\Rightarrow 4(m-1)^2=4m^2(*)\)

Khi đó:

\(\Delta=4(m-1)^2-4m^2=0\) theo $(*)$

Do đó pt đã cho có nghiệm kép.

Moon
Xem chi tiết
Huỳnh Quang Sang
11 tháng 9 2019 lúc 20:27

Lời giải sẽ dài lắm nhé

x1,x2 là hai nghiệm của \(P(x)\)nên :

\(P(x_1)=ax_1^2+bx_1+c=0\)                                                      \((1)\)

\(P(x_2)=ax^2_2+bx^2+c=0\)

\(P(x_1)-P(x_2)=a\left[x^2_1-x^2_2\right]+b\left[x_1-x_2\right]=0\)

\(a\left[x_1+x_2\right]\left[x_1-x_2\right]+b\left[x_1-x_2\right]=0\)

\(\left[x_1-x_2\right]\left[a\left\{x_1+x_2\right\}+b\right]=0\)

Vì x1 \(\ne\)x2 nên x1 - x2 \(\ne\)0 do đó 

\(a\left[x_1+x_2\right]+b=0\Rightarrow b=-a\left[x_1+x_2\right]\)                                                  \((2)\)

Thế 2 vào 1 ta được :

\(ax^2_1-a\left[x_1+x_2\right]\cdot x_1+c=0\)

\(\Rightarrow c=ax_1\left[x_1+x_2\right]-ax^2_1=ax_1x_2\)                                          \((3)\)

Thế 2 vào 3 vào P\((x)\)ta được :

\(P(x)=ax^2+bx+c=ax^2-ax\left[x_1+x_2\right]+ax_1x_2\)

\(=ax^2-axx_1-axx_2+ax_1x_2=a\left[x^2-xx_1-xx_2+x_1x_2\right]\)

\(=a\left[x\left\{x-x_1\right\}-x_2\left\{x-x_1\right\}\right]=a\left[x-x_1\right]\left[x-x_2\right]\)

Vậy : ....

8B.18. Khải Hưng
Xem chi tiết
๖ۣۜNɢυуễи тυấи αин
Xem chi tiết
Thiên hạ vô nhị
24 tháng 12 2018 lúc 15:57

Bài 1:

nếu x1<x2=>2018.x1-3<2018.x2

=>f(x1)<f(x2)

Bài 2:

nếu x dương=>100x2+2 dương

nếu x âm=>100x2+2 dương vì  xluôn dương

=>f(x)=f(-x)

Bài 3:

nếu x1<x2=>-2019x1+1<2019x2+1

=>f(x1)<f(x2)

Phan Hải Đăng
Xem chi tiết
Chau Suong
Xem chi tiết
Hồng Phúc
31 tháng 10 2020 lúc 8:45

Biểu thức cuối là \(\frac{\sqrt{x_n^2-1}}{x_1}\) hay là \(\frac{\sqrt{x_n^2-1}}{x_{n+1}}\)

Khách vãng lai đã xóa