CMR:\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{1001^2}\)
1.tính nhanh
\(A=\frac{24.47-22}{24+47.23}.\frac{5+\frac{5}{7}+\frac{5}{11}-\frac{5}{13}+\frac{5}{1001}}{6+\frac{6}{7}+\frac{6}{11}-\frac{6}{13}+\frac{6}{1001}}\)
2.Chứng minh 817-279-913chia hết cho 405
Bài 1:
\(A=\frac{24.47-22}{24+47.23}.\frac{5+\frac{5}{7}+\frac{5}{11}-\frac{5}{13}+\frac{5}{1001}}{6+\frac{6}{7}+\frac{6}{11}-\frac{6}{13}+\frac{6}{1001}}\)\(=\frac{47.23+47-22}{24.47.23}.\frac{5\left(1+\frac{1}{7}+\frac{1}{11.}-\frac{1}{13}+\frac{1}{1001}\right)}{6\left(1+\frac{1}{7}+\frac{1}{11}-\frac{1}{13}+\frac{1}{1001}\right)}\)
\(=\frac{47.23+24}{24+47.23}.\frac{5}{6}\)
\(=1.\frac{5}{6}=\frac{5}{6}\)
Bài 2:
\(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{22}\left(3^6-3^5-3^4\right)\)
\(=3^{22}.405\) chia hết cho 405
=>đpcm
CMR : \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
Đặt \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...\frac{1}{100^2}\)
Ta có :
\(A< \frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}+...+\frac{1}{99\times100}\)
\(\Rightarrow A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
Ta có :
\(A>\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+...+\frac{1}{100\times101}\)
\(\Leftrightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{100}>\frac{1}{6}\)
Vậy \(\frac{1}{6}< A< \frac{1}{4}\left(đpcm\right)\)
cmr \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+......+\frac{1}{100^2}< \frac{1}{4}\)
1/5^2< 1/4.5=1/4-1/5
1/6^2<1/5.6=1/5-1/6
..
1/99^2<1/98.99=1/98-1/99
1/100^2<1/99.100=1/99-1/100
Cộng vế theo vế
=> 1/5^2+1/6^2+...+1/100^2< 1/4 -1/100<1/4
1/5^2> 1/5.6=1/5-1/6
1/6^2>1/6.7=1/6-1/7
..
1/99^2>1/99.100=1/99-1/100
1/100^2>1/100.101=1/100-1/101
Cộng vế theo vế
=> 1/5^2+1/6^2+...+1/100^2>1/5 -1/101=96/505>1/6
CMR : \(\frac{1}{6}
Dat A=1/5^2+1/6^2+1/7^2+............1/100^2<1/4.5+1/5.6+1/6.7+....+1/99.10=
1/4-1/5+1/5-1/6+1/6-1/7+.............1/99-1/100=
14-1/100=25/100-1/100=24/25/100=1/4(1)
A>1/5.6+1/6.7+1/7.8+....+1/100.101=
1/5-1/6+1/6-1/7+1/7-1/8 +...+1/100-1/101=
1/5-1/101>6 (2)
Tu 1 va 2 => dieu can chung minh
CMR: \(\frac{1}{6}<\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}<\frac{1}{4}\)
\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\)
\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}<\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}<\frac{1}{4}\)
Suy ra: điều cần chứng minh
đặt 1/5^2+1/6^2+,,,+1/100^2=A
*chứng minh A<1/4
ta có: \(\frac{1}{5^2}=\frac{1}{5.5}<\frac{1}{4.5}\)
\(\frac{1}{6^2}=\frac{1}{6.6}<\frac{1}{5.6}\)
...
\(\frac{1}{100^2}=\frac{1}{100.100}<\frac{1}{99.100}\)
\(=>A<\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=>A<\frac{1}{4}-\frac{1}{100}<\frac{1}{4}=>A<\frac{1}{4}\left(1\right)\)
*chứng minh A>1/6
ta có \(\frac{1}{5^2}=\frac{1}{5.5}>\frac{1}{5.6}\)
\(\frac{1}{6^2}=\frac{1}{6.6}>\frac{1}{6.7}\)
...
\(\frac{1}{100^2}=\frac{1}{100.100}>\frac{1}{100.101}\)
\(=>A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
\(=>A>\frac{1}{5}-\frac{1}{101}>\frac{1}{6}=>A>\frac{1}{6}\) (2)
từ (1) và (2)=>1/6<A<1/4 hay 1/6<1/5^2+...+1/100^2<1/4(đpcm)
tick nhé
CMR:\(\frac{1}{6}<\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+.....+\frac{1}{100^2}<\frac{1}{4}\)
đặt \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=A\)
*chứng minh A<1/4
ta có:\(A<\frac{1}{4.5}+\frac{1}{5.6}+..+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}<\frac{1}{4}\) *chứng minh A>1/6
ta có:
\(A>\frac{1}{5.6}+\frac{1}{6.7}+..+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+..+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\)
từ 2 điều trên =>đpcm
mk chắc chắn đúng,hồi chiều cô mk ms cho làm
Tính nhanh:
a) \(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+\frac{3^2}{13.16}+...+\frac{3^2}{97.100}\)
b)\(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{940}\)
c) A= \(\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}+\frac{6}{208}\)
d) M= \((1-\frac{1000}{2016}).(1-\frac{1001}{2016}).(1-\frac{1002}{2016})...(1-\frac{2017}{2016})\)
e) A= \(8400.(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25})\)
f) T= \((\frac{1}{2}+1).(\frac{1}{3}+1).(\frac{1}{4}+1)...(\frac{1}{98}+1).(\frac{1}{99}+1)\)
h) A=\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)phần \(\frac{1}{5}+\frac{5}{3}+\frac{5}{6}+\frac{1}{2}+...+\frac{1}{9}\)
c) \(A=\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}+\frac{6}{208}\)
\(=\frac{6}{1.4}+\frac{6}{4.7}+\frac{6}{7.10}+\frac{6}{10.13}+\frac{6}{13.16}\)
\(=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)
\(=2\left(1-\frac{1}{16}\right)\)
\(=2.\frac{15}{16}\)
\(=\frac{15}{8}\)
Vậy A=\(\frac{15}{8}\)
a) \(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)
\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
\(=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}=\frac{297}{100}\)
\(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{10}{20}-\frac{1}{20}\)
\(=\frac{9}{20}\)
CMR:\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\)\(\frac{1}{100^2}< \frac{1}{4}\)
Ta có\(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}< \frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{101}< A< \frac{1}{4}-\frac{1}{100}\)(A là đề bài)
Mà \(\frac{1}{5}-\frac{1}{30}=\frac{1}{6}< \frac{1}{5}-\frac{1}{101}< A< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
\(\Rightarrow\frac{1}{6}< A< \frac{1}{4}\left(ĐPCM\right)\)
Ta có: \(\frac{1}{5\cdot6}< \frac{1}{5^2}=\frac{1}{5\cdot5}< \frac{1}{4\cdot5}\)
\(\frac{1}{6\cdot7}< \frac{1}{6^2}=\frac{1}{6\cdot6}< \frac{1}{5\cdot6}\)
\(\frac{1}{7\cdot8}< \frac{1}{7^2}=\frac{1}{7\cdot7}< \frac{1}{6\cdot7}\)
.............................
\(\frac{1}{100\cdot101}< \frac{1}{100^2}=\frac{1}{100\cdot100}< \frac{1}{99\cdot100}\)
Đặt \(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{100\cdot101}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\)
\(B=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{99\cdot100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
\(=>\frac{1}{6}< A< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< B< \frac{1}{4}\)
\(=>\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(Đpcm\right)\)
CMR:\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+....+\frac{1}{100^2}\)<\(\frac{1}{4}\)
Ta có:\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\left(1\right)\)
\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\left(2\right)\)
Từ (1) và (2) ta được \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(đpcm\right)\)