Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phan thị thùy dung
Xem chi tiết
Uchiha Nguyễn
18 tháng 10 2015 lúc 22:17

Đặt số dư là a

Ta có: 5k + a - 5g - a = 5(k-g) chia hết cho 5           

Nguyễn Quỳnh Anh
Xem chi tiết
hatsune miku
8 tháng 10 2016 lúc 21:43

gọi hai số đó là a,b

vì a và b chia cho 5 có cùng số dư

=> a = 5k +r , b= 5t +r ( r < 5)

=> a -b = ( 5k+r ) - ( 5t +r ) 

            = 5k +r - 5t - r

            = 5k - 5t

            = 5 ( k - t) chia hết cho 5 

=> a- b chia hết cho 5

=> đpcm

Nhók Bạch Dương
29 tháng 10 2017 lúc 19:13

Mình thì đc học cách này

Gọi 2 số đã cho là a và b

Ta có : \(\frac{a⋮5}{b⋮5}\hept{\begin{cases}\left(a-b\right)⋮5\\\left(a+b\right)⋮5\end{cases}}\)

Vậy a chia hết cho 5 , b chia hết cho 5 thì ( a - b ) chia hết cho 5 

Bạn có thể dùng kí hiệu nhé

Đẹp Trai Nhất Việt Nam
Xem chi tiết
Nguyễn Thái Sơn
5 tháng 1 2017 lúc 20:42

nhìn cái tên của m đã thấy ức chế r, thằng sỉ nhục tổ quốc!!!

Nguyễn Thị Hoàng Ánh
8 tháng 10 2017 lúc 21:15

xl mk thấy tên bn ghê wa

Lê Đức Tuệ
4 tháng 9 2021 lúc 11:15
Thằng xl nghe tên mà ức chế vãi
Khách vãng lai đã xóa
Đặng Hoàng Mỹ Anh
Xem chi tiết
Nguyễn Công Minh Triết
30 tháng 6 2018 lúc 12:06

A) Gọi số dư của hai số đó là N ( N khác 0 ; N nhỏ hơn 7 )

    Gọi 2 số đó là 7A và 7B ( A , B khác 0 ; A>B )

Ta có : ( 7A + N ) : 7 ( dư N )

           ( 7B + N ) : 7 ( dư N )

=> ( 7A + N ) - ( 7B + N ) 

=  7A - 7B

= 7 . ( A - B ) chia hết cho 7

Vậy 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7 .

B) Theo đề ta có : 3 chỉ có 2 số dư là 1 hoặc 2

    Gọi 2 số đó là 3k+1 và 3h+2 

Ta có : 3k+1 : 3 ( dư 1 )

            3h+2 : 3 ( dư 2 )

=> ( 3k+1 ) + ( 3h+2 )

= 3k+ 3h + 3

= 3 . ( k + h + 1 )

Vậy 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3

Đọc thì nhớ tk nhá

An Bùi
Xem chi tiết
Lấp La Lấp Lánh
23 tháng 9 2021 lúc 10:33

Gọi 2 số đó là a và b và d là số dư khi chia a cho 7 và chia b cho 7

\(\Rightarrow\left\{{}\begin{matrix}a=7k+d\\b=7n+d\end{matrix}\right.\) \(\left(k,n\in Z\right)\)

\(\Rightarrow a-b=7k+d-7n-d=7\left(k-n\right)⋮7\left(đpcm\right)\)

 

Ruynn
23 tháng 9 2021 lúc 10:33

Kham khảo nhé:


Đinh thị Quỳnh Hương
Xem chi tiết
Vũ Thị Hương Giang
Xem chi tiết
hồ huy hoàng
17 tháng 7 2017 lúc 10:04

gọi a và b là hai số có cùng số dư là r khi chia cho 7 (giả sử a > hoặc bằng b)

ta có:a=7m+r,b=7n+r(m,m thuộc N)

khi đó a-b=(7m+r)-(7n-r)=7m-7n chia hết cho 7

Người Vô Danh
Xem chi tiết
Đức Nhật Huỳnh
20 tháng 10 2016 lúc 8:31

Gọi a và b là 2 số có cùng số dư khi chia cho 7 (giả sử a\(\ge\)b)

Ta có a=7m +r ; b=7n +r (m ; n \(\in\)N)

Khi đó a-b = ( 7m - r ) - ( 7n - r ) = 7m - 7n \(⋮\)7 (điều phải chứng minh)

Trịnh Đào Quốc Tuấn
Xem chi tiết
Die Devil
6 tháng 10 2016 lúc 10:38

\(\text{ Gọi 2 số cùng số dư khi chia cho 7 là a;b(a,b thuộc Z) }\)

\(\text{Gọi a/7=q+k(K là số dư q là thương) }\)


\(\text{Gọi b/7=p+k(p là thương, k là số dư) }\)

\(\text{suy ra a/7-b/7=q -- p }\)

\(\text{(a-b)/7 = q -- p }\)

\(\text{a-b = (q -- p) X7 }\)

\(\text{có (q -- p) X 7chia hết cho 7 suy ra a-b chia hết cho 7 }\)

pham hien
7 tháng 10 2016 lúc 21:37

Gọi hai số đó là a,b,r là số dư khi chia cho 7(10<a,b<0. a,b thuộc N) . Giả sử a > hoặc=b

Theo bài ra ta có :

a=7m+r,b=7n+r(m,n thuộc N)

Khi đó a-b=(7m+r)-(7n+r)=7m-7n

Vì 7 chia hết cho 7 nên 7m,7n cũng chia hết cho 7.Vậy 7m-7n chia hết cho 7

Thắng  Hoàng
8 tháng 10 2017 lúc 21:05

a-b chia hết cho7