Bài 16. Cho 2 3 20 A 2 2 2 ... 2 . Chứng minh rằng: a) A chia hết cho 2; b) A chia hết cho 3; c) A chia hết cho 5
Bài 1:Chứng minh rằng :
a) 10^28+8 chia hết cho 72
b)8^8+2^20 chia hết cho17
Bài 2 :Cho :
a)A = 2+2^2+2^3+.........+2^60
chứng minh rằng Achia hết cho 3; 7; 15
a)$10^{28}$1028 chia 9 dư 1
8 chia 9 dư 8
1 + 8 = 9 chia hết cho 9
$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 9 (1)
$10^{28}$1028 chia hết cho 8 (vì có 3 chữ số tận cùng là 000 chia hết cho 8)
8 chia hết cho 8
$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 8 (2)
Từ (1) và (2) kết hợp với ƯCLN (8,9) = 1 . Suy ra $10^{28}+8$1028+8 chia hết cho 72
b)$8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}\times\left(2^4+1\right)=2^{20}\times17$88+220=(23)8+220=224+220=220×(24+1)=220×17 chia hết cho 17
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{19}\right)⋮7\)
a) Chứng minh rằng A=2+2^2+2^3+...+2^20 chia hết cho 5.
b) Chứng minh rằng A=2+2^2+2^3+...+2^100chia hết cho 6
A = 2 + 2² + 2³ + ... + 2²⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁶.30
= 30.(1 + 2⁴ + ... + 2¹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5
Vậy A ⋮ 5
b) A = 2 + 2² + 2³ + ... + 2¹⁰⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2⁹⁷ + 2⁹⁸ + 2⁹⁹ + 2¹⁰⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2⁹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2⁹⁶.30
= 30.(1 + 2⁴ + ... + 2⁹⁶)
= 6.5.(1 + 2⁴ + ... + 2⁹⁶) ⋮ 6
Vậy A ⋮ 6
Bài 2: Chứng minh rằng: n2+n+6 chia hết cho 2
Bài 3: Chứng minh rằng: n3+5n chia hết cho 6
Bài 4: Chứng minh rằng: (n+20122013).(n+20132012) chia hết cho 2
Bài 5: Chứng tỏ rằng
a, 1038+8 chia hết cho 18
b, 1010+14 chia hết cho 16
Các bạn giúp mình nhé.
Cho A=2+2^2+2^3+......+2^20.Chứng minh rằng a, A chia hết cho 2. b, A chia hết cho 3.c, A chia hết cho 5
a)A=2(1+2+2^2+...+2^19)
=>A chia hết cho 2
b)A=(2+2^2)+(2^3+2^4)+...+(2^19+2^20)
A=2(1+2)+2^3(1+2)+...+2^19(1+2)
A=2.3+2^3.3+...+2^19.3
A=3(2+2^3+...+2^19)
=>A chia hết cho 3
c)A=(2+2^3)+(2^2+2^4)+...+(2^18+2^20)
A=2(1+2^2)+2^2(1+2^2)+...+2^18(1+2^2)
A=2.5+2^2.5+...+2^18.5
A=5(2+2^2+...+2^18)
=>A chia hết cho 5
Bài 1: Chứng minh rằng nếu tổng của 3 số nguyên liên tiếp là số lẻ thì tích của chúng chia hết cho 24.
Bài 2: Cho a, b, c, d thuộc Z; a khác (-c). Chứng minh rằng a.b + c.d + a.d + b.c chia hết cho a+c.
Bài 3: Cho x= 1- 3+ 3^2- 3^3+ ... + 3^98- 3^99.
a) Chứng minh x chia hết cho 20.
b) Tìm x.
c) Chứng tỏ 3100: 4 dư 1.
Bài 4: Cho a, b, c thuộc N thỏa mãn a^2+ b^2+ c^2= 2051. Chứng minh rằng a.b.c chia hết cho 3 nhưng không chia hết cho 12.
Cậu search mạng chứ gì
Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z)
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8.
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3.
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24.
Vậy đccm.
Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d).
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c.
Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có:
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99)
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3)
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96)
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20.
Vậy x chia hết cho 20 (đccm)
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100
=> 3x + x = 1 - 3^100
=> 4x = (1 - 3^100)
=> x = (1 - 3^100)/4
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm)
Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1.
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1.
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2.
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3
Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z)
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8.
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3.
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24.
Vậy đccm.
Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d).
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c.
Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có:
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99)
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3)
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96)
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20.
Vậy x chia hết cho 20 (đccm)
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100
=> 3x + x = 1 - 3^100
=> 4x = (1 - 3^100)
=> x = (1 - 3^100)/4
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm)
Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1.
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1.
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2.
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3
1:CHỨNG MINH RẰNG:
a: 1018+8 có chia hết cho 72 không?
b: 88+220 có chia hết cho 17 không?
2:CHỨNG MINH RẰNG:
a: Cho A= 2+22+23+.......+220 Chứng minh rằng
A có chia hết cho 3;7;15.
b: Cho B= 3+33+35+.......+31991 Chứng minh rằng B chia hết cho 13;41.