Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng trung
Xem chi tiết
Trần Ái Linh
17 tháng 6 2021 lúc 11:18

`\sqrta+\sqrtb >= \sqrt(a+b)`

`<=> a+b+2\sqrt(ab) >= a+b`

`<=> 2\sqrt(ab) >= 0`

`<=> ab>=0` (Đúng)

(`a>=0 ; b>= 0 => ab >=0 forall a,b`)

`=>` ĐPCM.

bui thi nhat linh
Xem chi tiết
Ngô Nam
9 tháng 10 2015 lúc 19:07

cậu xem hằng đẳng thức ở sau quyển vở ấy

Phạm Bá Tâm
Xem chi tiết
Nguyễn Đăng Nhân
22 tháng 2 2022 lúc 16:55

Đặt \(abc=k^3\), khi đó tồn tại các số thực dương x,y,z sao cho:

\(a=\frac{ky}{x};b=\frac{kz}{y};c=\frac{kx}{z}\)

Khi đó bất đẳng thức cần chứng minh tương đương:

\(\frac{1}{\frac{ky}{x}\left(\frac{kz}{y}+1\right)}+\frac{1}{\frac{kz}{y}\left(\frac{kx}{z}+1\right)}+\frac{1}{\frac{kx}{z}\left(\frac{ky}{x}+1\right)}\ge\frac{3}{k\left(k+1\right)}\)

Hay \(\frac{x}{y+kz}+\frac{y}{z+kx}+\frac{z}{x+ky}\ge\frac{3}{k+1}\)

Áp dụng bất đẳng thức Bunhiacopxki ta được:

\(\frac{x}{y+kz}+\frac{y}{z+kx}+\frac{z}{x+ky}\)

\(=\frac{x^2}{x\left(y+kz\right)}+\frac{y^2}{y\left(z+kx\right)}+\frac{z^2}{z\left(x+ky\right)}\ge\frac{\left(x+y+z\right)^2}{x\left(y+kz\right)+y\left(z+kx\right)+z\left(x+ky\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(k+1\right)\left(xy+yz+zx\right)}\ge\frac{3}{k+1}\)

Vậy bất đẳng thức được chứng minh, dấu "=" xảy ra khi \(a=b=c\)

Khách vãng lai đã xóa
Dương Thiên Tuệ
Xem chi tiết
Ichigo
Xem chi tiết
Nguyễn Anh Duy
28 tháng 10 2016 lúc 22:16

Ta có:

\(\left(\sqrt{a}+\sqrt{b}\right)^2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\left(\sqrt{a}\right)^2+\sqrt{a}.\sqrt{b}+\sqrt{b}.\sqrt{a}+\left(\sqrt{b}\right)^2\)

\(=a+b+2\sqrt{a}.\sqrt{b}\)

\(=\left(\sqrt{a+b}\right)^2+2\sqrt{a}.\sqrt{b}\)

\(\sqrt{a}\ge0,\sqrt{b}\ge0\) nên \(2\sqrt{a}.\sqrt{b}\ge0\) cho nên

\(\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a+b}\right)^2=2\sqrt{a}.\sqrt{b}\ge0\).

Tức là \(\left(\sqrt{a}+\sqrt{b}\right)^2\ge\left(\sqrt{a+b}\right)^2,\) suy ra \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)

Đẳng thức \(\sqrt{a}+\sqrt{b}=\sqrt{a+b}\) xảy ra chỉ khi \(\sqrt{a}.\sqrt{b}=0\)

tức là khi \(\sqrt{a}=0\) hoặc \(\sqrt{b}=0\), hay là \(a=0\) hoặc \(b=0\).

Lê Minh Đức
Xem chi tiết
Nguyễn Thiều Công Thành
18 tháng 7 2017 lúc 21:07

đặt \(S=\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\)

\(=\frac{a^3}{4a^2b^2+a^2}+\frac{b^3}{4b^2c^2+b^2}+\frac{c^3}{4a^2c^2+c^2}\ge\frac{\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2}{4a^2b^2+4b^2c^2+4c^2a^2+a^2+b^2+c^2}\)

xét hiệu:

1-4(a2b2+b2c2+c2a2)-a2-b2-c2

=2ab+2bc+2ca-4(a2b2+b2c2+c2a2)

=2ab(1-2ab)+2bc(1-2bc)+2ca(1-2ca)

ta có:

\(2ab\le\frac{\left(a+b\right)^2}{2}\le\frac{1}{2};2bc\le\frac{\left(b+c\right)^2}{2}\le\frac{1}{2};2ca\le\frac{\left(c+a\right)^2}{2}\le\frac{1}{2}\)

\(\Rightarrow2ab\left(1-2ab\right);2bc\left(1-2bc\right);2ca\left(1-2ca\right)\ge0\)

\(\Rightarrow1\ge4\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2\)

\(\Rightarrow\frac{\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2}{4\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)

\(\Rightarrow\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)

=>đpcm

dấu"=" xảy ra khi 1 số=1;2 số còn lại =0

Thánh Ca
Xem chi tiết
๖ACE✪Hoàngミ★Việtツ
17 tháng 9 2017 lúc 9:23

Ta có a và b không âm nên 

\(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}=\frac{a+b}{2}\left(a+b+\frac{1}{2}\right)\ge\sqrt{ab}\left(a+b+\frac{1}{2}\right)\)(bất đẳng thức cô - si)

Cần chứng minh \(\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge a\sqrt{b}+b\sqrt{a}\). Xét hiệu hai vế

\(\sqrt{ab}\left(a+b+\frac{1}{2}\right)-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\sqrt{ab}\left(a+b+\frac{1}{2}-\sqrt{a}-\sqrt{b}\right)\)

\(=\sqrt{ab}\left[\left(\sqrt{a}-\frac{1}{2}\right)^2+\left(\sqrt{b}-\frac{1}{2}\right)^2\right]\ge0\)

Xảy ra đẳng thức \(\Leftrightarrow a=b=\frac{1}{4}\)hoặc\(a=b=0\)

๖ACE✪Hoàngミ★Việtツ
17 tháng 9 2017 lúc 9:16

bạn áp dụng bất đẳng thức CÔ - SI là ra

Nguyễn Minh Quang 123
Xem chi tiết
Trần Đức Thắng
13 tháng 9 2015 lúc 8:21

\(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}=\frac{a+b}{2}\left(a+b+\frac{1}{2}\right)\)

Áp dụng BĐT cô si 

=> \(\frac{a+b}{2}\ge\sqrt{ab}\)

=> \(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}\ge\sqrt{ab}\left(a+b+\frac{1}{2}\right)\) (1)

CM  \(\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge\) \(a\sqrt{b}+b\sqrt{a}\)

XH : \(\sqrt{ab}\left(a+b+\frac{1}{2}\right)-a\sqrt{b}-b\sqrt{a}\)

\(\sqrt{ab}\left(a+b+\frac{1}{2}-\sqrt{a}-\sqrt{b}\right)=\sqrt{ab}\left(a-\sqrt{a}+\frac{1}{4}+b-\sqrt{b}+\frac{1}{4}\right)\)

\(\sqrt{ab}\left[\left(\sqrt{a}-\frac{1}{2}\right)^2+\left(\sqrt{b}-\frac{1}{2}\right)^2\right]\ge0\) Với mọi a ; b > 0 

Tự Cm tiếp nha 

 

 

chu ngọc trâm anh
Xem chi tiết
Nguyệt
20 tháng 6 2019 lúc 8:37

\(2.\left(a+b\right)\ge a+2\sqrt{ab}+b\)(a,b >=0)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\)(luôn đúng với mọi a,b >=0)

Vì BĐT cuối đúng nên BĐT đầu đúng

Nguyễn Tấn Phát
20 tháng 6 2019 lúc 8:57

ta có:\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\sqrt{\left(a+b\right)^2}\ge\sqrt{4ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

Vì a,b là các số không âm nên \(\sqrt{ab}=\sqrt{a}.\sqrt{b}\)

\(\Leftrightarrow a+b+a+b\ge a+2\sqrt{a}.\sqrt{b}+b\)

\(\Leftrightarrow2\left(a+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\left(ĐPCM\right)\)