giải pt: a, \(x^3+\frac{1}{x^3}=13\left(x+\frac{1}{x}\right)\)
b, (x-3)3 +(x+1)3 = 8(x-1)3
giải pt
a) \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-3}=12\left(\frac{x-2}{x-3}\right)^2\)
b) \(\frac{2\left(x+1\right)}{3x^2+x}+\frac{13\left(x+1\right)}{3x^2+7x+6}=6\)
b) \(\frac{2\left(x+1\right)}{3x^2+x}+\frac{13\left(x+1\right)}{3x^2+x+6\left(x+1\right)}=6\) (1)
Đặt \(a=x+1;b=3x^2+x\) thì
\(\left(1\right)\Leftrightarrow\frac{2a}{b}+\frac{13a}{b+6a}=6\)
\(\Leftrightarrow4a^2-7ab-2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(4a+b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2b\\a=-\frac{1}{4}b\end{cases}}\)
Đến đây thì dễ rồi
Giải pt :
a) \(x^2+3x\sqrt[3]{3x+3}-12+\frac{1}{\sqrt{x}}=\frac{\sqrt{x}+8}{x}\)
b) \(\sqrt{\left(x-1\right)\left(3-x\right)}+\sqrt{x+2}=\sqrt{x-1}+\sqrt{3-x}+\frac{x}{2}\)
Giải pt:
\(a.\frac{x}{3}-\frac{5x}{6}-\frac{15x}{12}=\frac{x}{4}-5\)
\(b.\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
\(c.\frac{x-1}{2}-\frac{x+1}{15}-\frac{2x-13}{6}=0\)
\(d.\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)
a) \(\frac{x}{3}-\frac{5x}{6}-\frac{15x}{12}=\frac{x}{4}-5\)
\(\Leftrightarrow\frac{4x-10x-15x}{12}=\frac{3x-60}{12}\)
\(\Leftrightarrow-21x=3x-60\)
\(\Leftrightarrow24x=60\)
\(\Leftrightarrow x=\frac{5}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{5}{2}\right\}\)
b) \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
\(\Leftrightarrow\frac{\left(8x-3\right)-2\left(3x-2\right)}{4}=\frac{2\left(2x-1\right)+\left(x+3\right)}{4}\)
\(\Leftrightarrow8x-3-6x+4=4x-2+x+3\)
\(\Leftrightarrow2x+1=5x+1\)
\(\Leftrightarrow2x=5x\)
\(\Leftrightarrow x=0\)
Vậy tập nghiệm của phương trình là \(S=\left\{0\right\}\)
c) \(\frac{x-1}{2}-\frac{x+1}{15}-\frac{2x-13}{6}=0\)
\(\Leftrightarrow\frac{15\left(x-1\right)-2\left(x+1\right)-5\left(2x-13\right)}{30}=0\)
\(\Leftrightarrow15x-15-2x-2-10x+65=0\)
\(\Leftrightarrow3x+48=0\)
\(\Leftrightarrow x=-16\)
Vậy tập nghiệm của phương trình là \(S=\left\{-16\right\}\)
d) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)
\(\Leftrightarrow\frac{9\left(3-x\right)+16\left(5-x\right)}{24}=\frac{12\left(1-x\right)-48}{24}\)
\(\Leftrightarrow27-9x+80-16x=12-12x-48\)
\(\Leftrightarrow-25x+107=-12x-36\)
\(\Leftrightarrow-13x+143=0\)
\(\Leftrightarrow x=11\)
Vậy tập nghiệm của phương trình là \(S=\left\{11\right\}\)
Giải các phương trình:
a) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
b) \(\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\)
c) \(1+\frac{1}{x+2}=\frac{12}{8+x^3}\)
d) \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)
a)\(\frac{1}{x-1}\)-\(\frac{3x2}{x3-1}\)=\(\frac{2x}{x2+x+1}\)
<=> \(\frac{1}{x-1}\)-\(\frac{3x2}{\left(x-1\right)\left(x2+x+1\right)}\)=\(\frac{2x}{x2+x+1}\) ĐKXĐ: x khác 1
<=> x2+x+1 - 3x2 = 2x(x-1)
<=>x2+x+1 - 3x2 = 2x2-2x
<=>x2-3x-1=0( đoạn này làm nhanh nhé)
<=>x2-2*\(\frac{3}{2}\)x +\(\frac{9}{4}\)-\(\frac{9}{4}\)-1=0
<=>(x-\(\frac{3}{2}\))2-\(\frac{13}{4}\)=0
<=>(x-\(\frac{3-\sqrt{13}}{2}\))(x-\(\frac{3+\sqrt{13}}{2}\))=0
\(\begin{cases}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{cases}\)
b) pt... đkxđ x khác 1;2;3
<=> 3(x-3) +2(x-2)=x-1
<=> 3x-9 +2x-4 = x-1
<=> 4x= 12
<=> x=3 ( ko thỏa đk)
vậy pt vô nghiệm
c) 1+\(\frac{1}{x+2}\)=\(\frac{12}{\left(x+2\right)\left(x2+2x+4\right)}\)đkxđ : x khác -2
<=> x3+8 + x2+2x+4 = 12
<=> x3+x2+2x=0
<=> x2+x+2=0( chia cả 2 vế cho x)
pt này chắc chắn vô nghiệm nhé bạn
giải PT: a, (4x-5)2 (2x-3)(x-1)=9
b,\(\frac{5}{x-8}+1=\frac{23}{x^2-5x-24}+\frac{2}{x+3}\)
c,(\(\left(\frac{x-1}{99}+\frac{x-99}{1}\right)+\left(\frac{x-3}{97}+\frac{x+97}{3}\right)+\left(\frac{x-5}{93}+\frac{x-95}{5}\right)=6\)
c, Trừ hai vế cho 6
Vế trái thì lấy từng số hạng trừ 1 là được
giải PT: a) \(4x^2+\frac{1}{x^2}+7=8x+\frac{4}{x}\) b)\(x^3+\frac{1}{x^3}=13\left(x+\frac{1}{x}\right)\)
a)
pt <=> \(\left(2x+\frac{1}{x}\right)^2+3=4\left(2x+\frac{1}{x}\right)\)
<=> \(\left(2x+\frac{1}{x}-1\right)\left(2x+\frac{1}{x}-3\right)=0\)
<=> \(\orbr{\begin{cases}2x+\frac{1}{x}=1\\2x+\frac{1}{x}=3\end{cases}}\)
<=> \(\orbr{\begin{cases}2x^2+1=x\\2x^2+1=3x\end{cases}}\)
<=> \(\orbr{\begin{cases}4x^2-2x+2=0\\\left(x-1\right)\left(2x-1\right)=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(2x-1\right)^2+1=0\left(1\right)\\\left(x-1\right)\left(2x-1\right)=0\left(2\right)\end{cases}}\)
CÓ: \(\left(2x-1\right)^2+1\ge1>0\forall x\)
=> PT (1) VÔ NGHIỆM
PT (2) <=> \(\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
b)
pt <=> \(\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}-1\right)=13\left(x+\frac{1}{x}\right)\)
<=> \(\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}-1-13\right)=0\)
<=> \(\orbr{\begin{cases}x^2+1=x\\x^2+\frac{1}{x^2}=14\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(1\right)\\x^4+1=14x^2\left(2\right)\end{cases}}\)
DO: \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
=> PT (1) VÔ NGHIỆM.
PT (2) <=> \(a^2+1=14a\) ( \(a=x^2\))
<=> \(\orbr{\begin{cases}a=7+4\sqrt{3}\\a=7-4\sqrt{3}\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=\left(\sqrt{3}+2\right)^2\\x^2=\left(2-\sqrt{3}\right)^2\end{cases}}\)
=> \(x=\left\{\sqrt{3}+2;-\sqrt{3}-2;2-\sqrt{3}\right\}\)
Bài 1 Trong các cặp pt sau pt nào là pt tương dương
a 3x - 5 = 0 và (3x - 5)(x + 2) = 0
b x2 + 1 = 0 và 3(x+1) = 3x - 9
c 2x - 3 =0 và x/5 + 1 = 13/10
Bài 2 Giải các pt sau
a 4x - 1 = 3x - 2
b 3x + 7 = 8x - 12
c 1,2 - ( x - 0,8) = -2(0,9 + x)
d 2,3x - 2(0,7 +2x) = 3,6 - 1,7x
e \(\frac{5x-4}{2}=\frac{16x+1}{7}\)
f \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
g \(\frac{x+1}{3}+\frac{3\left(2x+1\right)}{4}=\frac{2x+3\left(x+1\right)}{6}+\frac{7+12x}{12}\)
h \(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
Bài 3 Giải các pt sau
a (x - 1)2 - 9 = 0
b (2x - 1)2 - (x + 3)2 = 0
c 2x2 - 9x + 7 = 0
d x3 - x2 - x + 1 = 0
e (x - 1)(5x + 3) = (3x - 8)(x - 1)
f x2 - 5 = \(\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
g (x + 2)(3 - 4x) = x2 + 4x + 4
h x3 + x2 + x + 1 = 0
Bài 4 Cho pt (m +1)x - 3m = 8
a Giải pt sau khi m = 3
b Với giá trị nào của m thì pt sau vô nghiệm
Giải các phương trình:
a) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
b) \(\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\)
c) \(1+\frac{1}{x+2}=\frac{12}{8+x^3}\)
d) \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(=>x^2+x+1-3x^2=2x\left(x-1\right)\)
\(=>-2x^2+x+1=2x^2-2x\)
\(=>-4x^2+3x+1=0\)
\(=>\left(x-1\right)\left(x+\frac{1}{4}\right)=0\)'
\(=>\orbr{\begin{cases}x-1=0\\x+\frac{1}{4}\end{cases}=>\orbr{\begin{cases}x=1\\x=-\frac{1}{4}\end{cases}}}\)
a) \(\frac{1}{x-1}-\frac{3x^2}{x^3}=\frac{2x}{x^2+x+1}\)
b)\(\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\)
c)\(1+\frac{1}{x+2}=\frac{12}{8+x^3}\)
d) \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)
giúp mình giải phương trình có ẩn này với ???
Cái này là phương trình chứa ẩn ở mẫu đó nha, mình cần sớm