A = ( \(\sqrt{x}\)+1 -\(\frac{4\sqrt{x}}{\sqrt{x}+1}\)) : (\(\frac{\sqrt{x}}{\sqrt{x}+1}\)- \(\frac{1}{1-\sqrt{x}}\)- \(\frac{2-\sqrt{x}}{x-1}\)
a) Tìm điều kiện để biểu thức A được xác định
b) Rút gọn
c) Tìm x để A < 1
Cho biểu thức E = \(\left(\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{\sqrt{x}+1}{\sqrt{x}+3}-\frac{2\sqrt{x}}{\sqrt{x}-1}\right)\div\frac{-x+14\sqrt{x}+3}{x\sqrt{x}-4x+3\sqrt{x}}\)
a. Tìm điều kiện để biểu thức được xác định
b. Rút gọn biểu thức
cho biểu thức B = \(\left(\frac{\sqrt{x}+2}{\sqrt{x}-1}-\frac{\sqrt{x}-2}{\sqrt{x}+1}\right).\frac{x-1}{\sqrt{x}+2}\)
a tính điều kiện để biểu thức B được xác định
b, Rút gọn B
A = ( \(\sqrt{x}\)+1 -\(\frac{4\sqrt{x}}{\sqrt{x}+1}\)) : (\(\frac{\sqrt{x}}{\sqrt{x}+1}\)- \(\frac{1}{1-\sqrt{x}}\)- \(\frac{2-\sqrt{x}}{x-1}\)
a) Tìm điều kiện để biểu thức A được xác định
b) Rút gọn
c) Tìm x để A < 1
A = \((\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1})\times\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
a) Hãy tìm điều kiện xác định và rút gọn biểu thức A
b) Tìm giá trị nhỏ nhất của biểu thức A
c) Tính giá trị của A tại x= \(\frac{18\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
cho biểu thức\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2\sqrt{x}}{\sqrt{x}+1}-\frac{3x}{x-1}\right):\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a)Tìm điều kiện xác định của A
b)Rút gon A
c) Tìm các giá trị nguyên của x để A có giá trị nguyên
Cho biểu thức
\(P=\left(\frac{1}{\sqrt{x}-1}+\frac{11}{x+\sqrt{x}+1}-\frac{34}{1-x\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right)\)
a)Tìm điều kiện của x để P xác định, rút gọn P?
b) tính giá trị của P khi \(x=3-2\sqrt{2}\)
c)tìm giá trị nhỏ nhất của biểu thức P? Giá trị đó đạt được khi x bằng bao nhiêu?
a: \(P=\dfrac{x+\sqrt{x}+1+11\sqrt{x}-11+34}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x+12\sqrt{x}+24}{\sqrt{x}+2}\)
b: Thay \(x=3-2\sqrt{2}\) vào P, ta được:
\(P=\dfrac{3-2\sqrt{2}+12\left(\sqrt{2}-1\right)+24}{\sqrt{2}-1+2}\)
\(=\dfrac{27-2\sqrt{2}+12\sqrt{2}-12}{\sqrt{2}+1}=5+5\sqrt{2}\)
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
a)Tìm điều kiện xác định, rút gọn biểu thức
b)Tìm giá trị nhỏ nhất P
c)Tìm x để biểu thức Q=\(\frac{2\sqrt{x}}{P}\)nhận giá trị nguyên
\(\left(\frac{\sqrt{x}-2}{2\sqrt{x}-2}+\frac{3}{2\sqrt{x}+2}-\frac{\sqrt{x}+3}{2\sqrt{x}+2}\right):\left(1-\frac{\sqrt{x}-3}{x-1}\right)\)
a . Tìm điều kiện xác định
b. Rút gọn biểu thức
CHO BIỂU THỨC:
A=\(\left(\frac{3+\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}-3}{x\sqrt{x}+1}\right).\frac{x^2+x\sqrt{x}-\sqrt{x}-1}{\sqrt{x}}\)
a, tìm điều kiện đối với biến x để A xđ
b, rút gọn