Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn gia khánh
Xem chi tiết
Vũ hh
2 tháng 4 2019 lúc 21:47

X=2013 và Y=2014 thỉ biểu thức đó có giá trị nn

nguyễn gia khánh
2 tháng 4 2019 lúc 21:53

thi ban tim ho mk

Hoang Linh
Xem chi tiết
Nguyễn Thị Ngọc Thơ
23 tháng 3 2017 lúc 22:01

Để mình giúp nha

\(A=|x-2013|+|x-2014|+|x-2015|\)

\(=|x-2013|+|2014-x|+2015-x|\)

\(\ge|x-2013+2015-x|+|2014-x|\)

\(\ge2+|2014-x|=2\)

Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}\left(x-2013\right)\left(2015-x\right)\ge0\\|2014-x|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)

Cô Nàng Song Tử
23 tháng 3 2017 lúc 21:52

Ta có: |x−2013|+|x−2014|+|x−2015|=|x−2013|+|x−2014|+|2015-x|=(|x−2013|+|2015-x|)+|x−2014|

Vì |x−2013|+|2015-x|\(\ge\)|x−2013+2015-x|=2

Dấu"=" xảy ra khi (x-2013)(2015-x)\(\ge0\Rightarrow2013\le x\le2015\)

|x−2014|\(\ge0\)

Dấu"=" xảy ra khi x-2014=0\(\Rightarrow x=2014\)

|x−2013|+|x−2014|+|x−2015|\(\ge\)2

Dấu"=" xảy ra khi\(\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)

Vậy GTNN của |x−2013|+|x−2014|+|x−2015|=2 đạt được khi x=2014

THN
Xem chi tiết
vũ tiền châu
4 tháng 9 2017 lúc 20:25

ĐK : \(x\ne-2\)

ta có \(A=\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{3x^2+6x+9}{3\left(x+2\right)^2}=\frac{2x^2+8x+8+x^2-2x+1}{3\left(x+2\right)^2}\)

             \(=\frac{2\left(x+2\right)^2+\left(x-1\right)^2}{3\left(x+2\right)^2}=\frac{2}{3}+\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}\) 

vì (x-1)^2 >=0=> \(\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}>=0\)

=> \(A>=\frac{2}{3}\)

dấu = xảy ra <=> x=1 ( thỏa mãn ĐKXĐ)

chíp chíp
Xem chi tiết
Nguyễn Nhã Hiếu
16 tháng 8 2017 lúc 13:21

a)A=|\(x+5\)|\(+2-x\)

=> \(x+5=0\)

\(2-x=0\)

=>\(x=-5\)

\(x=2\)

Gía trị nhỏ nhất của A là :

|-5+5|=2-2

=|0|=0

=>=0

Vậy .....................

Nguyen Duy Dai
Xem chi tiết
Trần Điền
Xem chi tiết
Nguyễn Anh Quân
8 tháng 3 2018 lúc 12:30

Hình như đề sai rùi bạn ơi !

Phải sửa xy/x^2+y^2 thành x^2+y^2/xy hoặc cái gì khác

Vì xy/x^2+y^2 chỉ có GTLN chứ ko có GTNN đâu

Mk nói có gì sai thì thông cảm nha !

Trần Điền
8 tháng 3 2018 lúc 12:34

đề không sai đâu bạn à. Đây là đề toán chuyên ở tỉnh mình mà

Nguyễn Ngọc Tuấn Anh
1 tháng 11 2019 lúc 20:33

Theo B.C.S ta có \(\sqrt{2\left(x^2+y^2\right)}\)\(\ge\)(\(\sqrt{\left(x+y\right)^2}\)\(=x+y\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{2\left(x^2+y^2\right)}\ge\left(\frac{1}{x}+\frac{1}{y}\right)\left(x+y\right)=2+\frac{x^2+y^2}{xy}\)

\(\Leftrightarrow\)\(P\ge2+\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}+\frac{3\left(x^2+y^2\right)}{4xy}\)

\(\Leftrightarrow\)\(P\ge2+2\sqrt{\frac{xy}{x^2+y^2}\times\frac{x^2+y^2}{4xy}}\)\(+\frac{3\times2xy}{4xy}\)

\(\Leftrightarrow\)\(P\ge2+1+\frac{3}{2}=\frac{9}{2}\)

Dấu bằng xảy ra \(\Leftrightarrow\)x=y

Khách vãng lai đã xóa
chíp chíp
Xem chi tiết
 Mashiro Shiina
16 tháng 8 2017 lúc 12:11

\(A=\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}\)

Ta thấy:

\(\left\{{}\begin{matrix}21\left|4x+6\right|+33>0\\3\left|4x+6\right|+5>0\end{matrix}\right.\)

Vậy \(A>0\)

\(MAX_A\Rightarrow MIN_{3\left|4x+6\right|+5}\)

\(\left|4x+6\right|\ge0\Rightarrow3\left|4x+6\right|\ge0\Rightarrow3\left|4x+6\right|+5\ge5\)

Dấu "=" xảy ra khi:

\(3\left|4x+6\right|=0\Rightarrow4x=-6\Rightarrow x=-\dfrac{3}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}21\left|4x+6\right|=0\\3\left|4x+6\right|=0\end{matrix}\right.\)

Vậy \(MIN_A=\dfrac{33}{5}\)

Đức Hiếu
16 tháng 8 2017 lúc 13:28

Cách làm của Phúc khá phức tạp bạn có thể tham khảo cách của mình nha!

Với mọi giá trị của \(x\in R\) ta có:

\(\left\{{}\begin{matrix}21\left|4x+6\right|+33\ge33\\3\left|4x+6\right|+5\ge5\end{matrix}\right.\)

\(\Rightarrow\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}\ge\dfrac{33}{5}\)

Để \(\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}=\dfrac{33}{5}\) thì

\(99\left|4x+6\right|+165=105\left|4x+6\right|+165\)

\(\Rightarrow105\left|4x+6\right|-99\left|4x+6\right|=0\)

\(\Rightarrow\left|4x+6\right|=0\Rightarrow x=\dfrac{3}{2}\)

Vậy...........

Chúc bạn học tốt!!!

Toàn
Xem chi tiết
Trần Thiên Kim
29 tháng 12 2017 lúc 16:20

a. ĐKXĐ : x>1.

b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)

c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:

\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)

Vậy giá trị của A tại \(x=4-2\sqrt{3}\)\(1+3\sqrt{3}\).

Đặng Dương Hồng Ngọc
Xem chi tiết
Đặng Dương Hồng Ngọc
28 tháng 10 2023 lúc 18:33

minh tag dung cho

 

HT.Phong (9A5)
28 tháng 10 2023 lúc 18:47

BĐT: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\Rightarrow m=\left|x-1\right|+\left|x-5\right|\)

\(=\left|x-1\right|+\left|-\left(x-5\right)\right|\)

\(=\left|x-1\right|+\left|5-x\right|\)

Theo BĐT ta có: \(m=\left|x-1\right|+\left|5-x\right|\ge\left|x-1+5-x\right|=4\)

Vậy: \(m_{min}=4\)