Tính nhanh:
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}\)
tính nhanh
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)
S = 3 - \(\frac{3}{100}\)= \(\frac{300}{100}-\frac{3}{100}=\frac{297}{100}\)
S=3/1.4+3/4.7+3/7.10+.....+3/97.100
S=1/1-1/4+1/4-1/7+1/7-1/10+.....+1/97-1/100
S=1-1/100
S=99/100
Tính nhanh
\(A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Trả lời
\(A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{4.7}+...+\frac{3}{97.100}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
#)Giải :
\(A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.11}+...+\frac{3}{97.100}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{97}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
Tính C=1.4+2.5+3.6+4.7+...+1006.1009
Tính S=\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...\)
biết tổng S có 100 số hạng.
tính nhanh:
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+.......+\frac{3}{40.43}\)
=1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/41
=1-1/41=40/41
= 3(1/1.4+1/4.7+1/7.10+.......+1/40.43)
=3(1-1/4+1/4-1/7+1/7-1/10+....+1/40-1/43)
=3(1-1/43)
=3.42/43
=126/43
3/1.4+3/4.7+3/7.10+.....+3/40.43
=1/1-1/4+1/4-1/7+1/7-1/10+1/10-.....+1/40-1/43
=1+(-1/4+1/4)+(-1/7+1/7)+(-1/10+1/10)+.....-1/43
=1+0+0+0+....-1/43
1-1/43=43/43-1/43=42/43
Tính :
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+\frac{3^2}{13.16}+...+\frac{3^2}{97.100}\)
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+.....+\frac{3^2}{97.100}\)
\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)
Ta thấy :
\(\frac{3}{1.4}=\frac{4-1}{1.4}=1-\frac{1}{4}\)
\(\frac{3}{4.7}=\frac{7-4}{4.7}=\frac{1}{4}-\frac{1}{7}\)
\(.........\)
\(\frac{3}{97.100}=\frac{100-97}{97.100}=\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow A=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)=3\cdot\frac{99}{100}=\frac{297}{100}\)
đáp án = \(\frac{297}{100}\)
đúng không?
kết bạn với mh nha
Tính nhanh: \(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+\frac{3^2}{13.16}+...+\frac{3^2}{97.100}\)
\(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+...+\frac{3^2}{97.100}\)
\(=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{97.100}\right)\)
\(=3.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}\)
B = \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)
. là nhân
\(B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+..+\frac{3}{97.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-....+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}\)
\(=\frac{100}{100}-\frac{1}{100}\)
\(=\frac{99}{100}\)
Tính B = \(\frac{3}{1.4}\)+ \(\frac{3}{4.7}\)+\(\frac{3}{7.10}\)+.....+\(\frac{3}{27.30}\)
\(B=3.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+........+\frac{1}{27.30}\right)\)
\(B=3.\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-.......-\frac{1}{27}+\frac{1}{27}-\frac{1}{30}\right)\)
\(B=1.\left(\frac{1}{1}-\frac{1}{30}\right)\)
\(B=\frac{29}{30}\)
B =\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)
B = \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{27}-\frac{1}{30}\)
B =\(\frac{1}{1}-\frac{1}{30}\)
B =\(\frac{29}{30}\)
Ta có:
\(B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{27}-\frac{1}{30}\)
\(=1-\frac{1}{30}=\frac{29}{30}\)
Vậy \(B=\frac{29}{30}\)
tính nhanh:
\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+.........+\frac{5}{100.103}\)
\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{100.103}\)
\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{5}{3}\left(1-\frac{1}{103}\right)\)
\(=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)
\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{100.103}=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)
=5/3.(3/1.4+3/4.7+3/7.10+...+3/100.103)
=5/3.(1-1/4+1/4-1/7+1/7-1/10+...+1/100-1/103)
=5/3.(1-1/103)=5/3.102/103=170/103
đáp số : 170/103