chứng tỏ rằng: n2+n+6 chia hết cho 5
chứng tỏ rằng: n2 + n - 1 không chia hết cho 2 với n thuộc n
chứng tỏ mọi số tự nhiên n thì tích n.(n + 5) chia hết cho 2
Chứng tỏ rằng tổng sau ko chia hết cho 10:
A=405^ n+2^405+ m^2(m,n€N;n khác 0)
Do n thuộc N, n khác 0 nên 405n tận cùng là 5
Có: 2405 = 2404.2 = (24)101.2 = (...6)101.2 = (...6).2 = (...2)
m2 là số chính phương nên chỉ có thể tận cùng là 0;1;4;5;6;9
Như vậy, A chỉ có thể tận cùng là 7;8;1;2;3;6, không chia hết cho 10 (đpcm)
a,chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6) chia hết cho 2
b, chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n+5) chia hết cho 2
1.Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) ( n + 6 ) chia hết cho 2
2.Chứng tỏ rằng với mọi số tự nhiên n thì tích n(n+5) chia hết cho 2
3. Gọi A = n2 + n + 1 . Chứng minh rằng :
a) A không chia hết cho 2
b) A không chia hết cho 5
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
1 Chứng tỏ rằng
a ) 10 ^21 +20 chia hết cho 6
b) 10^2015 +8 chia hết cho 18
2 Chứng tỏ rằng vs mọi số tự nhiên n thì ( n +n ) . ( n + 12 ) chia hết cho 2
3 Chứng tỏ rằng tính các ba số chẵn liên tiếp chia hết cho 48
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6)chia hết cho 2
Chứng tỏ rằng với mọi số tự nhiên n thì
n.(n+5)chia hết cho 2
1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)
+Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)
2)Tg tự câu a
1 + 1 =
em can gap!!!
Nhanh e k cho
Chứng tỏ rằng :
a) (5.n+7).(4.n+6) chia hết cho 2với mọi n€N
b) (8.n+1).(6.n+5) ko chia hết cho 2 vs mọi n€N
a)(5n+7)(4n+6)=20n^2+58n+42
Ta thấy 20;58;42 chia hết cho 2 nên (5n+7)(4n+6) chia hết cho 2
b)(8n+1)(6n+5)=40n^2+46n+5
Ta thấy 20;46 chia hết cho 2 và 5 ko chia hết cho 2 nên (8n+1)(6n+5) ko chia hết cho 2
Biết 6 chia hết cho (n+3)
Chứng tỏ rằng (5.n+21) chia hết cho (n+3)