Rút gọn \(P=\frac{\sqrt{a}+3}{\sqrt{a}-2}-\frac{\sqrt{a}-1}{\sqrt{a}+2}+\frac{4\sqrt{a}-4}{4-a}\)
rút gọn
P=\(\left(\frac{3\sqrt{a}}{\sqrt{a}+4}+\frac{\sqrt{a}}{\sqrt{a}-4}+\frac{4\left(a+2\right)}{16-a}\right):\left(1-\frac{2\sqrt{a}+5}{\sqrt{a}+4}\right)\)
\(P=\dfrac{3a-12\sqrt{a}+a+4\sqrt{a}-4a-8}{\left(\sqrt{a}+4\right)\left(\sqrt{a}-4\right)}:\dfrac{\sqrt{a}+4-2\sqrt{a}-5}{\left(\sqrt{a}+4\right)}\)
\(=\dfrac{-8\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+4\right)\left(\sqrt{a}-4\right)}\cdot\dfrac{\sqrt{a}+4}{-\left(\sqrt{a}+1\right)}=\dfrac{8}{\sqrt{a}-4}\)
bài 1: cho biểu thức: P=\(\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\)
a) Rút gọn P
b) Tìm các giá trị nguyên của a để P nguyên
bài 2: cho biểu thức: P=\(\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)
a) Rút gọn P
b) Tìm các giá trị nguyên của a (a>8) để P nguyên
Bài 1
a) \(P=\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\) (ĐK : x\(\ge0\) ; x\(\ne\) 1)
\(=\frac{3a+\sqrt{9a}-3}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\)
\(=\frac{3a+\sqrt{9a}-3-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{3a+\sqrt{9a}-3-a+1-a+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)
b) \(P=\frac{\sqrt{a}+1}{\sqrt{a}-1}=\frac{\sqrt{a}-1+2}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)
Vậy để P là số nguyên thì: \(\sqrt{a}-1\inƯ\left(2\right)\)
Mà Ư(2)={-1;1;2;-1}
=> \(\sqrt{a}-1\in\left\{1;-1;2;-2\right\}\)
Ta có bảng sau:
\(\sqrt{a}-1\) | 1 | -1 | 2 | -2 |
a | 4 | 0 | 9 | \(\sqrt{a}=-1\) (ktm) |
vậy a={0;4;9} thì P nguyên
Bài 2
\(P=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)(ĐK:a\(\ge\)8)
\(=\frac{\sqrt{\left(a-4\right)+4\sqrt{a-4}+4}+\sqrt{\left(a-4\right)-4\sqrt{a-4}+4}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)
\(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}}{1-\frac{4}{a}}\)
\(=\sqrt{a-4}+2+\sqrt{a-4}-2:\frac{a-4}{a}\)
\(=2\sqrt{a-4}\cdot\frac{a}{a-4}\)
\(=\frac{2a}{\sqrt{a-4}}\)
rút gọn biểu thức sau
P=(\(\frac{3\sqrt{a}}{\sqrt{a}+4}+\frac{\sqrt{a}}{\sqrt{a}-4}+\frac{4\left(a+2\right)}{16-a}\))\(:\left(1-\frac{2\sqrt{a}+5}{\sqrt{a}-4}\right)\)
P= (\(\frac{3\sqrt{a}}{\sqrt{a}+4}+\frac{\sqrt{a}}{\sqrt{a}-4}+\frac{4\left(a+2\right)}{16-a}\)):\(\left(1-\frac{2\sqrt{a}+5}{\sqrt{a}-4}\right)\)
=\(\left(\frac{3\sqrt{a}\left(\sqrt{a}-4\right)}{a-16}+\frac{\sqrt{a}\left(\sqrt{a}+4\right)}{a-16}-\frac{4a+8}{a-16}\right):\left(\frac{\sqrt{a}-4-2\sqrt{a}-5}{\sqrt{a}-4}\right)\)
= \(\left(\frac{3a-12\sqrt{a}+a+4\sqrt{a}-4a-8}{a-16}\right):\left(\frac{-\sqrt{a}-9}{\sqrt{a}-4}\right)\)
=\(\left(\frac{-8\sqrt{a}-8}{a-16}\right).\left(\frac{\sqrt{a}-4}{-\sqrt{a}-9}\right)=\frac{8\sqrt{a}+8}{\left(\sqrt{a}+4\right).\left(\sqrt{a}+9\right)}=\frac{8\sqrt{a}+8}{a+13\sqrt{a}+36}\)
rút gọn Q = \(\frac{\sqrt{a}+3}{\sqrt{a}-2}\)- \(\frac{\sqrt{a}-1}{\sqrt{a}+2}\)+ \(\frac{4\sqrt{a}-4}{4-a}\)
Q = \(\frac{\sqrt{a}+3}{\sqrt{a}-2}\)- \(\frac{\sqrt{a}-1}{\sqrt{a}+2}\)+ \(\frac{4-4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
= \(\frac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)-\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)+4-4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
=\(\frac{a+5\sqrt{a}+6-a+3\sqrt{a}-2+4-4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
= \(\frac{8+4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
= \(\frac{4\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)
= \(\frac{4}{\sqrt{a}-2}\)
\(Q=\frac{\sqrt{a+3}}{\sqrt{a-2}}-\frac{\sqrt{a-1}}{\sqrt{a+2}}+\frac{4-4\sqrt{a}}{\left(\sqrt{a-2}\right)\left(\sqrt{a+2}\right)}\)
\(Q=\frac{\left(\sqrt{a+3}\right)\left(\sqrt{a+2}\right)-\left(\sqrt{a-1}\right)\left(\sqrt{a-2}\right)+4-4\sqrt{a}}{\left(\sqrt{a-2}\right)\left(\sqrt{a+2}\right)}\)
\(Q=\frac{a+5\sqrt{a}+6-a+3\sqrt{a-2}+4-4\sqrt{a}}{\left(\sqrt{a-2}\right)\left(\sqrt{a+2}\right)}\)
\(Q=\frac{8+4\sqrt{a}}{\left(\sqrt{a-2}\right)\left(\sqrt{a+2}\right)}\)
\(Q=\frac{4\left(\sqrt{a+2}\right)}{\left(\sqrt{a+2}\right)\left(\sqrt{a-2}\right)}\)
\(Q=\frac{4}{\sqrt{a-2}}\)
\(B=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^{^2}}}}\)RÚT GỌN B với a>8
\(=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)
\(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}\right)-2}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)
\(=\frac{\sqrt{a-4}+2+\sqrt{a-4}-2}{1-\frac{4}{a}}\)
\(=\frac{2a}{\sqrt{a-4}}\)
Rút gọn
a) \(\left(\frac{2+\sqrt{a}}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right)\left(\frac{a\sqrt{a}-\sqrt{a}-1}{\sqrt{a}}\right)\)
b) \(\left(\frac{\sqrt{x}+1}{x-4}-\frac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right)\left(\frac{x\sqrt{x}+2x+4\sqrt{x}-8}{\sqrt{x}}\right)\)
giúp vs
1)a) n thuộc N*: rút gọn:
K = \(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}\)
b) tính
I = \(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2015^2}+\frac{1}{2016^2}}+\sqrt{1+\frac{1}{2016^2}+\frac{1}{2017^2}}\)2) A= \(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
a) rút gọn A
b) tìm x đề A=1
3) rút gọn B = \(\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}\)
4) tính: \(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
C= \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
1.\(\sqrt{2}\left(\sqrt{50}-3\sqrt{2}\right):4-\sqrt{16}\)6
2. rút gọn
\(\left(\sqrt{\frac{a}{2}}-\frac{1}{2\sqrt{a}}\right)\left(\right)\frac{a-\sqrt{a}}{\sqrt{a+1}}-\frac{a+\sqrt{a}}{\sqrt{a-1}}\left(\right)\)
Rút gọn các biểu thức sau:
a) \(\sqrt{4\frac{1}{2}}-\sqrt{32}+\sqrt{72}-\sqrt{162}\)
b) \(\left(\frac{1}{\sqrt{5}-3}-\frac{1}{\sqrt{5}+3}\right)\times\frac{3-\sqrt{3}}{1-\sqrt{3}}\)
c) \(\left(1-\frac{4\sqrt{a}}{a-1}+\frac{1}{\sqrt{a}-1}\right):\frac{a-2\sqrt{a}}{a-1}\)
a) \(=\sqrt{\frac{9}{2}}-\sqrt{16.2}+\sqrt{36.2}-\sqrt{81.2}\)
\(=\frac{3}{2}\sqrt{2}-4\sqrt{2}+6\sqrt{2}-9\sqrt{2}\)
\(=\left(\frac{3}{2}-4+6-9\right)\sqrt{2}=\frac{-11}{2}\sqrt{2}\)
b) \(=\frac{\sqrt{5}+3-\sqrt{5}+3}{\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)}.\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\)
\(=\frac{6}{5-9}.\left(-\sqrt{3}\right)=\frac{3}{2}\sqrt{3}\)
c) \(=\left(\frac{a-1-4\sqrt{a}+\sqrt{a}+1}{a-1}\right):\frac{\sqrt{a}\left(\sqrt{a}-2\right)}{a-1}\)
\(=\frac{a-3\sqrt{a}}{a-1}.\frac{a-1}{\sqrt{a}\left(\sqrt{a}-2\right)}\)
\(=\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}-3}{\sqrt{a}-2}\)