Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
cô gái cá tính
Xem chi tiết
Nguyễn Minh Quang
12 tháng 8 2021 lúc 15:27

a. ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\times\left(-6\right)=13\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3\times\left(-6\right)\times1=19\)

\(x^5+y^5=\left(x+y\right)\left[x^4-x^3y+x^2y^2-xy^3+y^4\right]\)

\(=\left(x+y\right)\left[\left(x^2+y^2\right)^2-x^2y^2-xy\left(x^2+y^2\right)\right]=1.\left(13^2-\left(-6\right)^2-\left(-6\right).13\right)=211\)

b.\(x^2+y^2=\left(x-y\right)^2+2xy=1+2\times6=13\)

\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+6.3.1=19\)

\(x^5-y^5=\left(x-y\right)\left[\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\right]\)

\(=\left(x-y\right)\left[\left(x^2+y^2\right)^2-x^2y^2+xy\left(x^2+y^2\right)\right]=1.\left(13^2-6^2+6.13\right)=211\)

Khách vãng lai đã xóa
Buddy
Xem chi tiết
Vui lòng để tên hiển thị
22 tháng 7 2023 lúc 8:46

`a, (x-y)^2 = (x+y)^2 - 4xy = 12^2 - 35 . 4 = 144 - 140 = 4`.

`b, (x+y)^2 = (x-y)^2 + 4xy = 8^2 + 20.4 = 64 + 80 = 144`

`c, x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 5^3 - 3 . 6 . 5 = 125 - 90 = 35`

`d, x^3 - y^3 = (x-y)^3 - 3xy(x-y) = 3^3 - 3 .40 . 3 = 27 - 360 = -333`.

cô gái cá tính
Xem chi tiết
Không Tên
6 tháng 8 2018 lúc 11:30

a)  \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2.\left(-6\right)=13\)

    \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3.\left(-6\right).1=19\)

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)=13.19-\left(-6\right)^2.1=211\)

b)  \(x^2+y^2=\left(x-y\right)^2+2xy=1^1+2.6=13\)

    \(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+3.6.1=19\)

   \(x^5-y^5=\left(x^2+y^2\right)\left(x^3-y^3\right)+x^2y^2\left(x-y\right)=13.19+6^2.1=283\)

khanhhuyen6a5
Xem chi tiết
Nhã Doanh
26 tháng 5 2018 lúc 17:09

Khai triển rồi thu gọn

Phạm Ngọc Nam
19 tháng 9 2019 lúc 21:09

đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải

Nguyễn Thiên Kỳ
Xem chi tiết
Nguyen van an
8 tháng 8 2017 lúc 15:27

(x+y)^2  =a^2

x^2 +2xy +y^2 =a^2

x^2+y^2 =a^2-2xy =a^2 -2b

x^3 +y^3 = (x+y)(x^2 -xy +y^2)

             =a(a^2-2b-b)

            =a(a^2-3b)

            =a^3- 3ab

(x^2 +y^2)^2=(a^2-2b)^2  ( cái này tính cho x^4 + y^4)

tương tự như câu đầu tiên 

x^5+ y^5 (cái đó mình không biết)

Nguyen van an
8 tháng 8 2017 lúc 15:28

sai con khi

Yen Nhi
2 tháng 7 2021 lúc 10:23

\(1.\)

\(a)\)

\(x^2+y^2\)

\(=\left(x+y\right)^2-2xy\)

\(=a^2-2b\)

\(b)\)

\(x^3+y^3\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=a[\left(x+y\right)^2-3xy]\)

\(=a\left(a^2-3b\right)\)

\(=a^3-3ab\)

\(c)\)

\(x^4+y^4\)

\(=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=\left(a^2-2b\right)^2-2b^2\)

\(=a^4-4a^2b+2b^2\)

\(d)\)

\(x^5+y^5\)

\(=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)

\(=[\left(x+y\right)^2-2xy][\left(x+y\right)^3-3xy\left(x+y]\right)-ab^2\)

\(=\left(a^2-2b\right)\left(a^3-3ab\right)-ab^2\)

\(=a^5-3a^3b-2a^3b+6ab^2-ab^2\)

\(=a^5-5a^3b+5ab^2\)

Khách vãng lai đã xóa
Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 11 2021 lúc 9:37

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

lê thị mai an
Xem chi tiết
Nguyễn Phương Uyên
4 tháng 10 2019 lúc 20:24

a, x + y = 5

=> (x + y)^2 = 5^2

=> x^2 + 2xy + y^2 = 25

có xy = 4

=> x^2 + 2.4 + y^2 = 25

=> x^2 + y^2 = 17

NHK
4 tháng 10 2019 lúc 20:24

+)vì x + y =5

=> (x+y)2=25

=> x2+2xy+y2=25

=>x2+y2+8=25 ( vì xy =4 )

=>x2+y2=17

Nguyễn Phương Uyên
4 tháng 10 2019 lúc 20:27

x + y = 3

=> (x + y)^2 = 3^2

=> x^2 + 2xy + y^2 = 9

mà x^2 + y^2 = 5

=> 5 + 2xy = 9

=> 2xy = 4

=> xy = 2

x + y = 3

=> (x + y)^3 = 3^3

=> x^3 + 3x^2y + 3xy^2 + y^3 = 27

=> x^3 + y^3 + 3xy(x + y) = 27

xy = 2; x + y = 3

=> x^3 + y^3 + 3.2.3 = 27

=> x^3 + y^3 = 18 = 27

=> x^3 + y^3 = 9

TOAN 2000
Xem chi tiết
Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 11 2021 lúc 13:59

\(a,N=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x-y\right)\left(x^4-y^4\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\\ N=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}=x^2+y^2\\ b,N=\left(x+y\right)^2-2xy=0-2\cdot1=-2\)