cho a và b là 2 stn liên tiếp a chia 5 dư 1 và b chia 5 dư 4
CM ab+1 chia hết cho 5
1. Cho hai số tự nhiên a và b, biết a chia cho 6 dư 2 và b chia cho 6 dư 3. Chứng minh rằng ab chia hết cho 6
2. Cho a và b là hai số tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3. Chứng minh rằng ab chia cho 5 dư 1
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6
Cho a và b là 2 số tự nhiên, Biế t a chia 5 dư 2 và b chia 5 dư 3. CMR ab chia hết cho 5 dư 1
1.Chứng minh rằn 3 STN liên tiếp thì sẽ có một số chia hết cho 3
2.Chứng minh rằng 4 STN liên tiếp thì có một số chia hết cho 4
3. Chứng minh rằng Nếu hai STN liên tiếp chùng chia cho 5 và có cùng số dư thì thì hiệu của chúng chia hết cho 5
Chú ý là chữ số liên tiếp một chữ chia hết cho 3 nha chứ ko phải là tổng chia hết cho 3 (áp dụng với bài 4 nữa)
1. gọi 3 stn liên tiếp là n,n+1,n+2
ta có n+n+1+n+2 = 3n +3 = 3(n+1) : hết cho 3
2. gọi 4 stn liên tiếp là n,n+1,n+2,n+3
ta có n+n+1+n+2+n+3 = 4n+6
vì 4n ; hết cho 4 mà 6 : hết cho 4
=> 4n+6 ko : hết cho 4
3. gọi 2 stn liên tiếp đó là a,b
ta có a=5q + r
b=5q1 +r
a-b = ( 5q +r) - (5q1+r)
= 5q - 5q1
= 5(q-q1) : hết cho 5
Tìm stn nhỏ nhất khi chia cho 8;12;15 dư lần lượt là 6;10;13 và chia hết cho 23 4,tìm stn có 4 chữ số sao cho chia nó cho 8;125 dư lần lượt là 7 và 4 5,tìm n biết a, 4n-5 chia hết cho 13 b, 5n+1 chia hết cho 7 c 25n +3 chia hết cho 53
Ai xong mình cho 2 cái Tick
Bài 1:Cho a,b là 2 số tự nhiên. Biết Rằng a chia cho 5 dư 3 và b chia cho 5 dư 2. Chứng minh rằng ab chia cho 5 dư 1
Bài 2:Cho 3 số tự nhiên liên tiếp. Tích của 2 số đầu nhỏ hơn tích của 2 số sáu là 50. hỏi đã cho 3 số nào?
Bài 3: Cho a+b+c=2p. Chứng minh 2bc+b mũ 2+c mũ 2-a mũ 2= 4p(p-a)
Bài 4: Cho 3 số chẵn liên tiếp. Tích của 2 số sau lớn hơn tích của hai số đầu là 192. Hỏi đã cho 3 số nào?
1:
a chia 5 dư 3 nên a=5k+3
b chia 5 dư 2 nên b=5c+2
a*b=(5k+3)(5c+2)
=25kc+10k+15c+6
=5(5kc+2k+3c+1)+1 chia 5 dư 1
2:
Gọi ba số liên tiếp là a;a+1;a+2
Theo đề, ta có:
(a+1)(a+2)-a(a+1)=50
=>a^2+3a+2-a^2-a=50
=>2a+2=50
=>2a=48
=>a=24
=>Ba số cần tìm là 24;25;26
1 STN chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4 và chia hết cho 13.
a) Tìm STN có tính chất trên.
b) Tìm dạng chung của các số trên.
gọi số cân tìm là a
ta có a chia cho 3 dư 1 suy ra a+2 chia hết cho 3
a chia cho 4 dư 2 suy ra a+2 chia hết cho 4
a chia cho 5 dư 3 suy ra a+2 chia hết cho 5
a chia cho 6 dư 4 suy ra a+2 chia hết cho 6
suy ra (a+2) là BC(3,4,5,6)= 60=B(60)=(0,60,120,180,240,300,360,420,540........0
a thuộc (58,118,178,238,298,358,418,538....
suy ra a=598
A và b là hai số tự nhiên. biết A chia 5 dư 1, B chia cho 5 dư 4. Chứng minh ab + 1 chia hết cho 5
Đặt A=5k+1, B=5k+4 \(\left(k\in N\right)\)
\(\Rightarrow ab+1=\left(5k+1\right)\left(5k+4\right)+1=25k^2+25k+5=5\left(5k^2+5k+1\right)⋮5\left(đpcm\right)\)
\(ab+1=\left(5k+1\right)\left(5k+4\right)+1\)
\(=25k^2+20k+5k+4+1\)
\(=25k^2+25k+5⋮5\)
Cho a và b là hai số tự nhiên. Biết a chia cho 5 dư 1; b chia cho 5 dư 4. Chứng minh ab + 1 chia hết cho 5.
Vì a chia 5 dư 1 nên đặt a = 5x + 1 (x Î N); b chia 5 dư 4 nên đặt b = 5y + 4(y Î N).
Ta có a.b + 1 = (5x + 1)(5y + 4) + 1 = 25xy + 20x + 5y + 5.
Þ ab + 1 = 5(5xy + 4x + y + 1) ⋮ 5 (đpcm).