Cho biết a - b = -1, ab= 2. Tính giá trị biểu thức sau
M= a^2 + b^2
Cho các số a,b,c thỏa mãn: a+b+c=1/a+1/b+1/c=1.Tính giá trị biểu thức sauM=a2015+b2015+c2015
cho biểu thức A= ( a^2-ab+1+b^2)a+b(b^2-ab+1+a^2) - (a^3+b^3)
tính giá trị của A biết : a=542; b=458
.Cho biểu thức A = ( x - 5 ) ( x2 + 5x + 25) - ( x – 2)(x+ 2) + x.(x2 + x + 4)
a) Rút gọn biểu thức A
b) Tính giá trị biểu thức A biết x = -2
b) Tính giá trị biểu thức A biết x2 – 1 = 0
a) A = (x - 5)(x² + 5x + 25) - (x - 2)(x + 2) + x(x² + x + 4)
= x³ - 125 - x² + 4 + x³ + x² + 4x
= (x³ + x³) + (-x² + x²) + 4x + (-125 + 4)
= 2x³ + 4x - 121
b) Tại x = -2 ta có:
A = 2.(-2)³ + 4.(-2) - 121
= 2.(-8) - 8 - 121
= -16 - 129
= -145
c) x² - 1 = 0
x² = 1
x = -1; x = 1
*) Tại x = -1 ta có:
A = 2.(-1)³ + 4.(-1) - 121
= 2.(-1) - 4 - 121
= -2 - 125
= -127
*) Tại x = 1 ta có:
A = 2.1³ + 4.1 - 121
= 2.1 + 4 - 121
= 2 - 117
= -115
tính giá trị của biểu thức a) cho a+b=5 ab=6 tính a^3+b^3
b)cho a+b=1 tính giá trị của 2.(a^3+b^3)-3.(a^2+b^2)
Cho biết a-b=7 Tính giá trị của biểu thức:
a) a(a+2)+b(b-2)-2ab
b) a2(a+1)-b2(b-1)+ab-3ab(a-b+1)
a) \(a^2+2a+b^2-2b-2ab=\left(a-b\right)^2+2\left(a-b\right)\)
Thay a-b=7 vào trên ta được:
7^2+2*7=63
Tính giá trị biểu thức:
Biết a-b=7. Tính: A=a2(a+1)-(b2b-1)+ab-3ab(a-b-1)
Cho biểu thức:
P=\(\dfrac{a^2}{ab+b^2}+\dfrac{b^2}{ab-a^2}-\dfrac{a^2+b^2}{ab}\)
a) rút gọn P
b) có giá trị nào của a,b để P=0
c) tính giá trị của P biết a,b thỏa mãn điều kiện: 3a2+3b2= 10ab và a>b>0
\(P=\dfrac{a^2}{ab+b^2}+\dfrac{b^2}{ab-a^2}-\dfrac{a^2+b^2}{ab}\) (\(a\ne b;a\ne0;a\ne-b;b\ne0\))
\(=\dfrac{a^2}{b\left(a+b\right)}+\dfrac{b^2}{a\left(b-a\right)}-\dfrac{a^2+b^2}{ab}\)
\(=\dfrac{a^3\left(a-b\right)-b^3\left(a+b\right)-\left(a^2+b^2\right)\left(a+b\right)\left(a-b\right)}{ab\left(a+b\right)\left(a-b\right)}\)
\(=\dfrac{a^4-a^3b-b^3a-b^4-\left(a^2+b^2\right)\left(a^2-b^2\right)}{ab\left(a+b\right)\left(a-b\right)}\)
\(=\dfrac{a^4-a^3b-b^3a-b^4-\left(a^4-b^4\right)}{ab\left(a+b\right)\left(a-b\right)}\)
\(=\dfrac{-a^3b-b^3a}{ab\left(a+b\right)\left(a-b\right)}\)
\(=\dfrac{-ab\left(a^2+b^2\right)}{ab\left(a+b\right)\left(a-b\right)}=-\dfrac{a^2+b^2}{a^2-b^2}\).
b) -Ta có: \(P=0\)
\(\Leftrightarrow-\dfrac{a^2+b^2}{a^2-b^2}=0\)
\(\Leftrightarrow a^2+b^2=0\)
-Vì \(a^2\ge0;b^2\ge0\)
\(\Rightarrow a=0;b=0\) (không thỏa mãn điều kiện).
-Vậy không có giá trị nào của a,b để \(P=0\).
c)
1.Biết a-2b=5, hãy tính giá trị của biểu thức :P=(3a-2b)/(2a+5)+(3b-a)/(b-5)
2.Cho a+b+c=0.Tính giá trị của các biểu thức sau:
A=1/(a^2+b^2-c^2)+1/(b^2+c^2-a^2)+1/(c^2+a^2-b^2)
P=3a-2b\2a+5 + 3b-a\b-5
=2a+a-2b\2a-5 + -a+2b+b\b-5
=2a+(a-2b)\2a-5 + -(a-2b)+b
=2a+5\2a-5 + -5+b\b-5
=-(2a-5)\(2a-5) + (b-5)\(b-5)
=-1+1=0
cho a>b>0 và a^2-6b^2=ab. Tính giá trị biểu thức : A=(2ab)/(a^2-7b^2). Tính giá trị biểu thức : A=(2ab)/(a^2-7b^2)