3. a) 2015^2016 + 2015^2015 và 2016^2016
b) 5^299 và 3^501
5 tk típ theo
20152016 + 20152015 và 20162016
5299 và 3501
Các bạn giải chi tiết, rõ rang giùm mình nhé
a) 20152016 + 20152015 = 20152015 . 2015 + 20152015 = 20152015 . ( 2015 + 1 ) = 20152015 . 2016
20162016 = 20162015 . 2016
Vì 20152015 . 2016 < 20162015 . 2016 nên 20152016 + 20152015 < 20162016
b) 5299 < 5300 = ( 52 ) 150 = 25150
3501 = ( 33 ) 167 = 27167
Vì 25150 < 27167 nên 5299 < 3501
So sánh 2 lũy thừa
1. a) 27^265 và 81^199 b) 1024^15 và 128^21
2. a) 5^340 và 7^255 b) 2^3333 và 3^2222
3. a) 2015^2016 + 2015^2015 và 2016^2016
b) 5^299 và 3^501
Ai rảnh ko, giải giúp tui bài này vs
\(1.\)
a, \(27^{265}\)và \(81^{199}\)
\(27^{265}=\left(3^3\right)^{265}=3^{795}\)
\(81^{199}=\left(3^4\right)^{199}=3^{796}\)
\(\Rightarrow3^{795}< 3^{796}hay27^{265}< 81^{199}\)
b, \(1024^{15}=\left(2^{10}\right)^{15}=2^{150}\)
\(128^{21}=\left(2^7\right)^{21}=2^{147}\)
\(2^{150}>2^{147}.hay.1024^{15}>128^{21}\)
1) So sánh 20162015 và 20152016
2) So sánh 22014 và 5891
3) So sánh (20152016+20162016)2015 và (20152015+20162015)2016
Ta có:
\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)
\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)
\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)
Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)
1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)
\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)
\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)
\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)
\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)
\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)
\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)
\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)
\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)
\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)
Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)
Mà \(2015^{2014}< 2013.2016^{2014}.2015\)
nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)
Vậy \(2015^{2016}>2016^{2015}.\)
5/ So sánh : A= 20152016 + 20152015 và B= 20162016
Câu 1
a) Chứng tỏ rằng 1/3 - 1/3^2 + 1/3^3 - 1/3^4 + 1/3^5 - 1/3^6 < 1/4
b) Cho A= 2015^2016 + 2016^2015 x 2015 và B= 1 + 2^2 + 3^2 + ......+2016^2. Tính AB có chia hết cho 5 không? Vì sao?
tính nhanh:
a) (2016*2017+2018*2+2015):[(2018*2017-2017*2015)+2016]
b)2018*20182017-2017*20182018
c)1+2-3-4+5+6-7-8+...+298-299-300+301+302
b1 cho a+2015/a-2015 = b+2016/b-2016 CMR a/b = 2015/2016
b2
b.x/y = 9/7; y/f = 3/7 và x-y+f = -15
c.x/y = 7/20; y/f = 5/8 và 2x + 5y - 2f = 100
Bài 2 :
b) x/y = 9/7 => x/9 = y/7 => x/27 = y/21 (1)
y/f = 3/7 => y/3 = f/7 => y/21 = f/49 (2)
Từ (1) và (2) => x/27 = y/21 = f/49
Áp dụng t/c của dãy tỉ số bằng nhau:
(tự làm)
c) x/y = 7/20 => x/7 = y/20 (1)
y/f= 5/8 => y/5 = f/8 => y/20 = f/32 (2)
Từ (1) và (2) => x/7 = y/20 = f/32
=> 2x/14 = 5y /100 = 2f/64
Áp dụng t/c của dãy tỉ số bằng nhau:
(phần còn lại......tự xử)
Các bạn giúp mình bài này với nha:
1) 3/-4 và -4/5
2) 19/18 và 2017/2016
3) 72/73 và 98/99
4) 18/31 và 15/37
5) 72/73 và 58/99
6) 2015/2016 + 2016/2017 và 2015/2016 + 2016/2017
Dấu "/" là dấu gạch ngang giữa tử số và mẫu số
Ai nhanh tớ tk cho
Câu này mình mới làm ở nhà thầy Phong -_-
1) Ta có: 3/-4 = -3/4
Vì -3/4 > -4/4 > -4/5
=> -3/4 > -4/5
2) 19/18 - 1 = 1/18
2017/2016 - 1 = 1/2016
Vì 1/2016 < 1/18
=> 2017 / 2016 < 19/18
3)72/73 + (72 + 26) / (73 + 26) = 98/99
Từ đó => 72/73 < 98/99
4) 18/31 > 15/31 > 15/37
=> 18/31 > 15/37
5) 72/73 > 58/73 > 58/99
=> 72/73 > 58/99
6) 2015/2016 + 2016/2017 = 2015/2016 + 2016 + 2017 =="
tk mừn đi
So sánh: a> A= 2015+2016 / 2016+2017 và B= 2015 / 2016 + 2016 / 2017
b> M=2015^35+1 / 2015^34+1 va N= 2015^34+1 / 2015^33+1
c> P= 2015^99+5 / 2015^99-1 va Q= 2015^99 +1 /2015^99
\(A=\frac{2015+2016}{2016+2017}=\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)
\(B=\frac{2015}{2016}+\frac{2016}{2017}\)
vì \(\frac{2015}{2016+2017}<\frac{2015}{2016}\)và \(\frac{2016}{2016+2017}<\frac{2016}{2017}\)
nên A <B