*Đang cần gập mn giúp ai làm được tích liền
Cho tam giác ABC nhọn, D là trung điểm của BC. Gọi I là trung điểm của AD, CI cắt AI tại K.
a) Chứng minh AK=1/2BK và KI=1/3CI
b) Trên AC lấy điểm E sao cho AE=1/3AC. Chứng minh 3 điểm B,I,E thẳng hàng
*Đang cần gập mn giúp ai làm được tích liền
Cho tam giác ABC nhọn, D là trung điểm của BC. Gọi I là trung điểm của AD, CI cắt AI tại K.
a) Chứng minh AK=1/2BK và KI=1/3CI
b) Trên AC lấy điểm E sao cho AE=1/3AC. Chứng minh 3 điểm B,I,E thẳng hàng
cho tam giác abc =8cm ac=12cm lấy điểm m trên cạnh ab sao cho bm=2cm lấy điểm n trên cạnh ac sao cho bn,ac,cn =3cm a, chứng minh rằng mn//bc b,gọi k là trung điểm của bc, tia ak cắt mn tại i, chứng minh rằng ni/kc=ai/ak c, chứng minh rằng i là trung điểm của mn
a: AM=6-2=6cm
AN=12-3=9cm
=>AM/AB=AN/AC
=>MN//BC
b: Xet ΔAKC có NI//KC
nên NI/KC=AI/AK
Xét ΔABK có MI//BK
nên MI/BK=AI/AK
=>NI/KC=MI/BK
c: NI/KC=MI/BK
KC=KB
=>NI=MI
=>I là tđ của MN
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
Ai có đề thi vào lớp chọn toán 8 , văn 8 thì cho mk xin vs ak...
Cho tam giác ABC nhọn, AB<AC. vẽ AD là p/g góc BAC (D thuộc BC). Trên AC lấy E sao cho AE=AB.
a) Chứng minh: BD=DE.
b) đường thẳng AB cắt DE tại F. Chứng minh tam giác DBF = tam giác DEC.
c)Qua C kẻ Cx song song với AB và cắt AD=K. Gọi I là giao điểm của AK và DF. Chứng minh I là trung điểm AK.
a) Xét ∆BAD và ∆EAD có :
AD chung
AB = AE
BAD = CAD (AD là phân giác)
=> ∆BAD = ∆EAD (c.g.c)
=> BD = DE
bl Vì BD = DE
=> ∆BDE cân tại D
=> DBE = DEB
Vì AB = AE (gt)
=> ∆ABE cân tại A
=> ABE = AEB
=> ABE + EBC = AEB + BED = ABD = AED
Mà ABD + DBF = 180° ( kề bù )
AED + DEC = 180° ( kề bù )
Mà ABD = AED (cmt)
=> DBF = DEC
Xét ∆BDF và ∆EDC có :
BD = DE
BDF = EDC ( đối đỉnh )
DBF = DEC ( cmt)
=> ∆BDF = ∆EDC (g.c.g)
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD=AE. Gọi I là trung điểm của DE, K là giao điểm của AI và BC. CMR: AI=AK.
Tam giác BDE.m là trung điểm của DE,N là trung điểm của BE => MN là đường trung bình của tam giác BDE=> MN//DB <=> MN//BA
tương tự c/m MQ là đường trung điểm của tam giác DEC => MQ//EC hay MQ//AC.Mà AC vuông góc AB=> MN vuông góc PQ => góc MNQ = 90
Tượng từ theo cách đường trung bình thì các góc còn lại của tứ giác MNPQ = 90 => là hình chữ nhạt
MN là đường trung bình => MN = 1/2 DB,MQ=1/2 EC mà EC=DB => MN=DB
=> tam giác là hình vuông (DHNB)
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD=AE. Gọi I là trung điểm của DE, K là giao điểm của AI và BC. CMR: AI=AK.
Cho tam giác ABC có AB AC . Trên tia đối của tia CA lấy điểm D sao cho CD AB . Gọi H , K lần lượt là trung điểm của AD, BC . Trung trực AD, BC cắt nhau tại I. Vẽ IE vuông góc AB tại E .a) Chứng minh Tam giác IABtâm giác IDC và AI là phân giác của BAC .b) Chứng minh BE HC và AI là đường trung trực của đoạn EH .c) Từ C kẻ đường thẳng song song với AB ,cắt đường thẳng EH tại F .Chứng minhTam giác BKE Tam giác CKF và E , K , F thẳng hàng.
vẽ hình hộ mik vs
a: Xét ΔIAB và ΔIDC có
IA=ID
AB=DC
IB=IC
=>ΔIAB=ΔIDC
=>góc IAB=góc IDC=góc IAD
=>AI là phân giác của góc BAC
b: Xét ΔAEI vuông tại E và ΔAHI vuông tại H có
AI chung
góc EAI=góc HAI
=>ΔAEI=ΔAHI
=>AE=AH; IE=IH
=>AI là trung trực của EH
cho tam giác ABC có AB = AC , Gọi D là trung điểm của cạnh BC
a, chứng minh tam giác ABD = tam giác ACD và AD vuông tại BC
b, vẽ DM vuông góc cs AB tại M . Trên cạnh AC lấy điểm N sao cho AN = AN . gọi I là giao điểm của AD và MN chứng minh AD vuông góc MN tia I
C, gọi K là trung điểm của CN , Trên tia DK lấy điểm E sao cho K là trung điểm của DE . Chứng minh M,N,E thẳng hàng
Cho tam giác nhọn ABC trên cạnh AB lấy điểm D sao cho AD=2/5AB, trên cạnh AC lấy điểm E sao cho AE=2/5AC a/CM DE//BC b/ đường trung tuyến AI cắt DE tại M. Chứng minh M là trung điểm của DE. c/ đường phân giác của góc BAC cắt BC tại I. Chứng minh IB. AE=IC.AD
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
b: Xét ΔABI có DM//BI
nên DM/BI=AD/AB
Xét ΔACI có EM//IC
nên EM/CI=AE/AC
=>DM/BI=EM/CI
=>DM=EM
=>M là trung điểm của DE
c: AI là phân giác
=>IB/IC=AB/AC=AD/AE
=>IB*AE=IC*AD