c/m 62n+19n-2n+1 chia hết cho 17
CMR với mọi x
\(6^{2n}+19n-2^{n+1}\)chia hết cho 17
BT1:Tìm x biết:
a.x^2-9=2(x+3)^2
b.4x^2-4x+1=(5-x)^2
BT3:C/m với mọi m thuộc Z ta có:
a.(2n-1)^3-(2n-1) chia hết cho 8
b.n^3-19n chia hết cho 6
a) \(x^2-9=2\left(x+3\right)^2\)
\(\Leftrightarrow x^2-9=2x^2+12x+18\)
\(\Leftrightarrow x^2-2x^2-12x=18+9\)
\(\Leftrightarrow-x^2-12x=27\)
\(\Leftrightarrow x^2+12x+27=0\)
\(\Leftrightarrow\left(x+6\right)^2=9=3^2=\left(-3\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+6=3\\x+6=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-9\end{cases}}\)
tìm số nguyên n để 2n^3+9n^2-19n+263 chia hết cho 2n-1
Tìm số nguyên n để 2n3 + 9n2 - 19n +263 chia hết cho 2n -1 ????
Làm ơn giải cho Thanks
Bạn ơi, giải dùm mình bài
Cho tam giác abc có ab=ac=bc. Hai đường phân giác bm và cm cắt nhau tại i . Chứng minh rằng: a) ia=ib=ic b) góc aib=góc bic=góc cia
nhaa
Tìm số tự nhiên n để :
a) n+4 chia hết cho n-1
b) n2 +1 chia hết cho n-1
c) n2 +5 chia hết cho n+1
d) 3n+1 chia hết cho 2n+3
e) 3n+26 chia hết cho n+4
f) 19n+7 chia hết cho 7n+1
a) Ta có : \(\frac{n+4}{n-1}=\frac{\left(n-1\right)+5}{n-1}=\frac{n-1}{n-1}+\frac{5}{n-1}=1+\frac{5}{n-1}\)
Để \(n+4⋮n-1\Leftrightarrow\frac{5}{n-1}\in N\Leftrightarrow5⋮n-1\Leftrightarrow n-1\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)
* Với n - 1 = -1 => n = -1 + 1 = 0 ( thỏa mãn )
* Với n - 1 = 1 => n = 1+ 1 = 2 ( thỏa mãn )
* Với n - 1 = -5 => n = -5 + 1 = -4 ( ko thỏa mãn )
* Với n - 1 = 5 => n = 5 + 1 = 6 ( thỏa mãn )
Vậy với n \(\in\) { 0; 2; 6 } thì n + 4 \(⋮\)n - 1
Các bài còn lại bn làm tương tự như vậy
tìm số nguyên n để 2n^3+9n^2-19n+263 chia hết cho 2n-1
AI LÀM ĐƯỢC MÌNH CHO 3 TICK NHÉ !!!
cho n là 1 số tự nhiên .hỏi tích (15n+17)*(19n+20)có chia hết cho 2ko
giúp mình vs! help me
*Nếu n lẻ
=> 15n lẻ
=> 15n + 17 chẵn
=> (15n + 17)(19n + 20) chẵn
=> (15n + 17)(19n + 20) chia hết cho 2
*Nếu n chẵn
=> 19n chẵn
=> 19n + 20 chẵn
=> (15n + 17)(19n + 20) chẵn
=> (15n + 17)(19n + 20) chia hết cho 2
Vậy ..........
*Nếu n lẻ
=> 15n lẻ
=> 15n + 17 chẵn
=> (15n + 17)(19n + 20) chẵn
=> (15n + 17)(19n + 20) chia hết cho 2
*Nếu n chẵn
=> 19n chẵn
=> 19n + 20 chẵn
=> (15n + 17)(19n + 20) chẵn
=> (15n + 17)(19n + 20) chia hết cho 2
Vậy ..........
Đặt A = n^2019 - n^2016 + n^2013 - ... + n^3 - 1
A = n^2016( n^3 - 1 ) + ... + (n^3 - 1)
A = (n^2016 + n^2010 + ... + 1)(n^3 - 1) chia hết cho n^3 - 1
Đặt B = n^2016 - n^2013 + ... - n^3
B = n^2013( n^3 - 1 ) + ... + n^3( n^3 - 1 )
B = (n^2013 + n^2007 + ... + n^3)(n^3 - 1) chia hết cho n^3 - 1
Suy ra A + B chia hết cho n^3 - 1
Lại có A + B = n^2019 -1 nên n^2019 -1 chia hết cho n^3 - 1
Tìm số tự nhiên n, biết rằng :
a, 10n + 17 chia hết cho 2n + 1
b, 3n + 1 chia hết cho 2n + 3
c, n2 + 1 chia hết cho n + 1
cho n là số tự nhiên chứng minh rằng
a:6^2n+19^n-2^n+1 chia hết cho 17
b 6^2n+1 + 5^n+2 chia hết cho 31
c: 9^2n+39 chia hết cho 40