Cho hình bình hành ABCD . M và N lần lượt trên các cạnh AB , CD cho AM = CN . Chứng tỏ rằng S AMND = S MBCN
Cho hình bình hành ABCD. Trên các cạnh AB và CD lần lượt lấy các điểm M và N sao cho AM = DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E và F. a) Chứng minh tứ giác AMND là hình bình hành. b) Chứng minh rằng tứ giác MEBF là hình thoi. c) Hình bình hành ABCD phải có thêm điều kiện gì để tứ giác BCNE là hình thang cân.
.a.
Vì `EF` là đường trung trực MB.
=> `EM=EB`
=> `ΔEMB` cân tại E
=> \(\widehat{EMB}=\widehat{EBM}\)
Chứng minh tương tự được: \(\widehat{FMB}=\widehat{FBM}\)
Vì `AM=DN` mà AM//DN
=> Tứ giác `AMND` là hình bình hành.
b.
Từ câu (a) suy ra:
ME//BF
BE//FM
=> Hình bình hành MEBF có `EF⊥MB`
=> Tứ giác MEBF là hình thoi
Cho hình bình hành ABCD, một đường thẳng d cắt các cạnh AB, CD lần lượt tại M, N sao cho S AMND = S BMNC. Chứng minh d luôn đi qua một điểm cố định
Cho hình bình hành ABCD sao cho AB = 2AD. Gọi M và N lần lượt là trung điểm AB và DC.
a) Chứng minh AM = NC và chứng minh AMCN là hình bình hành.
b) Chứng minh AM = DN và chứng minh AMND là hình thoi.
c) Chứng minh MBCN là hình thoi.
d) Gọi O là trung điểm BD. Chứng minh A; O và C thẳng hàng.
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
) Cho hình bình hành ABCD (AB>BC). Trên các cạnh AB và DC lần lượt lấy hai điểm M và N sao cho AM = CN; (M và N không trùng với trung điểm của AB và CD).
a) Tứ giác BMDN là hình gì? Vì sao?
b) Chứng minh rằng các đường thẳng AC, BD, MN cùng cắt nhau tại một điểm
c) Lấy điểm E đối xứng với D qua A. Gọi P là trung điểm của AB. Chứng minh E và C đối xứng với nhau qua P.
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
CHO ABCD LÀ HÌNH THANG (AB//CD) . M,N LẦN LƯỢT LÀ TRUNG ĐIỂM AB,CD. CM
SAMND=SMBCN=SABCD /2
Cho hình thoi ABCD: AC=5,4cm; BD=6,8cm. Trên các cạnh AB, CD lần lượt lấy điểm M, N sao cho AMND là hình bình hành. Xác định vị trí điểm N để diện tích hình bình hành AMND=6,12 cm vuông.
Diện tích hình thoi ABCD là: 5,4 x 6,8 : 2 = 18,36 (cm2)
Diện tích hình thoi ABCD gấp diện tích hình bình hành AMND số lần là: 18,36 : 6,12 = 3 (lần)
⇒ PN = \(\dfrac{1}{3}\) PC
mong anh chị giúp em!!!!
cho hình bình hành ABCD. Trên AB và CD lần lượt lấy các điểm E, F sao cho AE=CF. Trên AD và BC lần lượt lấy các điểm M, N sao cho AM = CN. Chứng minh tứ giác EMFN là hình bình hành
Ta có AECF là hình bình hành=> EF cắt AC ở trung điểm I của mỗi đường
AMCN là hình bình hành=>MN cắt AC ở trung điểm của mỗi đường
=>EF cắt MN ở trung điểm mỗi đường=> ĐPCM
Cho hình bình hành ABCD. Trên cạnh BC và CD lấy M và N Sao cho \(\frac{CN}{DN}=2.\frac{BM}{CM}\); BD cắt AM, AN lần lượt tại I và Q. Chứng minh: SAMN=2.SAIQ
Baøi 4. Cho hình bình hành ABCD. M là trung điểm AB và N là trung điểm CD. a/ Chứng minh AMND , MBCN là hình bình hành b/ Chứng minh AMCN là hình bình hành.