Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Jennie Kim
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2020 lúc 6:45

Chắc là toàn vecto???

a/ \(=\left(\overrightarrow{EA}+\overrightarrow{AB}\right)+\left(\overrightarrow{BC}+\overrightarrow{CD}\right)=\overrightarrow{EB}+\overrightarrow{BD}=\overrightarrow{ED}\)

b/ \(=\left(\overrightarrow{AB}+\overrightarrow{BC}\right)+\overrightarrow{CD}+\left(\overrightarrow{DF}+\overrightarrow{FE}\right)\)

\(=\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DE}=\overrightarrow{AD}+\overrightarrow{DE}=\overrightarrow{AE}\)

Trần Đại Hào
Xem chi tiết
Mirai Shykakyuu
Xem chi tiết
Tình Nguyễn Thị
Xem chi tiết
REAPER GAMER
Xem chi tiết
REAPER GAMER
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 5 2018 lúc 10:40

Giải bài 13 trang 74 Toán 8 Tập 1 | Giải bài tập Toán 8

Do ABCD là hình thang cân nên:

    AD = BC;

    AC = BD;

Xét hai tam giác ADC và BCD, ta có:

    AD = BC (gt)

    AC = BD (gt)

    DC cạnh chung

⇒ ΔADC = ΔBCD (c.c.c)

Giải bài 13 trang 74 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔECD cân tại E

⇒ EC = ED.

Mà AC = BD

⇒ AC – EC = BD – ED

hay EA = EB.

Vậy EA = EB, EC = ED.

Nguyễn Ngọc Quỳnh Như
Xem chi tiết
Duong Truong
1 tháng 3 2019 lúc 20:47

ta có : góc CAB=1/2 sđ cung CB

góc CDB = 1/2 sđ cung CB

-> góc CAB= góc CDB

ta lại có : góc ACD =1/2 sđ cung AD

góc ABD =1/2 sđ cung AD

-> góc ACD = góc ABD

xét tam giác EAC và EDB có;

góc EAC=góc EDB( CMT)

góc ACE= góc DBE(cmt)

-> 2 tam giác đồng dạng theo trường hợp g.g

-> EA/EC=ED/EB

-> EA.EB=EC.ED

Huỳnh Ái My
Xem chi tiết
_ℛℴ✘_
22 tháng 6 2018 lúc 13:17

Do ABCD là hình thang cân nên AD = BC, AC = BC, 
Xét hai tam giác ADC và BCD, ta có: 
         AD = BC (gt)
        AC = BD (gt)
         DC chung
Nên  ∆ADC =  ∆BCD (c.c.c)
Suy ra 
Do đó tam giác ECD cân tại E, nên EC = ED
Ta lại có: AC = BD suy ra EA = EB
Chú ý: Ngoài cách chứng minh  ∆ADC =  ∆BCD (c.c.c) ta còn có thể chứng minh  ∆ADC =  ∆BCD (c.g.c) như sau:
AD = BC,  , DC là cạnh chung.

❊ Linh ♁ Cute ღ
30 tháng 12 2018 lúc 22:27

Do ABCD là hình thang cân nên:

    AD = BC;

    AC = BD;

Xét hai tam giác ADC và BCD, ta có:

    AD = BC (gt)

    AC = BD (gt)

    DC cạnh chung

⇒ ΔADC = ΔBCD (c.c.c)

Giải bài 13 trang 74 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔECD cân tại E

⇒ EC = ED.

Mà AC = BD

⇒ AC – EC = BD – ED

hay EA = EB.

Vậy EA = EB, EC = ED.

NTN vlogs
31 tháng 12 2018 lúc 7:12

Do ABCD là hình thang cân nên:

    AD = BC;

    AC = BD;

Xét hai tam giác ADC và BCD, ta có:

    AD = BC (gt)

    AC = BD (gt)

    DC cạnh chung

⇒ ΔADC = ΔBCD (c.c.c)

⇒ ΔECD cân tại E

⇒ EC = ED.

Mà AC = BD

⇒ AC – EC = BD – ED

hay EA = EB.

Vậy EA = EB, EC = ED.