Cho đướng tròn O và hai dây AB, CD bằng nhau và các đường thẳng AB và CD cắt nhau tại E. Biết rằng các điểm B và D nằm trong cùng nửa mặt phẳng bờ AC. Chứng minh:
a) EA=EC và AB=CD
b)OE vuông góc với AC và DB
1)Cho hình bình hành ABCD, xác định các vectơ DA+DC,AB+DA.
2)Cho 5 điểm A, B, C, D, E. Chứng minh rằng: AC-ED+CD+EC-BC = AB
3)Cho hình vuông ABCD, tâm O cạnh bằng a.
a) Xác định vecto BA+DA+AC, AB+CA+BC, AB+AC.
b) Tính độ dài vecto DA+DC, AB-BC
Cho 5 điểm A,B,C,D,E . Cmr : vécto CD + EA= CA +ED
Cho hình thang cân ABCD nội tiếp đường tròn (O) với AB song song CD và AB<CD.M là trung điểm CD.
P là điểm di chuyển trên đoạn MD ( P khác M, D ).AP cắt (O) tại Q khác A, BP cắt (O) tại R khác B,
QR cắt CD tại E. Gọi F là điểm đối xứng với P qua E
2) Giả sử EA tiếp xúc (O). Chứng minh rằng khi đó QM vuông góc với CD.
Cho bốn điểm A B C D chứng minh rằng \(\overrightarrow{AB}\) + \(\overrightarrow{CD}\) + \(\overrightarrow{BC}\) = \(\overrightarrow{AD}\)
Cho tam giác \(ABC\), trung tuyến \(AM\). Điểm \(E\) bất kì thỏa mãn \(2\overrightarrow{EA}+\overrightarrow{EC}=\overrightarrow{0}\). Đường thẳng \(d\) qua \(E\) song song với \(AB\) cắt \(AM,BC\) lần lượt tại \(D,F\). \(G\) nằm trên cạnh \(AB\) sao cho diện tích hai tam giác \(BFG,ADE\) bằng nhau. Biết \(\overrightarrow{AG}=k\overrightarrow{AB}\). Tìm giá trị \(k\).
A. \(k=\dfrac{1}{3}\)
B. \(k=\dfrac{1}{2}\)
C. \(k=\dfrac{1}{4}\)
D. \(k=\dfrac{2}{3}\)
(Giải chi tiết giúp em ạ, em cảm ơn)
cho 4 điểm a b c d đẳng thức nào sau đây đúng
AB+CD=AC+BD
AC+CD=AD+BC
AB+CD=AD+CB
AB+CD=DA=BC
cho 6 điểm A,B,C,D,E,F bất kì . CMR:
VT AB+VT CD+VT EF= VT AD + VT CF+ VT EB
CMR : VT AB = VT BC
Cho hình thang cân ABCD nội tiếp đường tròn (O) với AB song song CD và AB<CD.
M là trung điểm CD. P là điểm di chuyển trên đoạn MD ( P khác M, D ).
AP cắt (O) tại Q khác A, BP cắt (O) tại R khác B, QR cắt CD tại E. Gọi F là điểm đối xứng với P qua E
1) Chứng minh rằng tâm đường tròn ngoại tiếp tam giác AQF luôn thuộc một đường thẳng cố định khi P di chuyển.