Cho Sn=(2 - căn3)n + (2+căn3)n (n thuộc Z cộng)
a. Chứng minh S3n+3Sn= Sn3
b. Tính S3, S4
Căn3(x) + căn3(2x-3) = căn3[12×(x-1)]
Căn3(x+1) +căn3(x-1) =căn3(5x)
Căn3(1+căn(x)) +căn3(1-căn(x)) =2
Căn3(x-1) +căn3(x-2) =căn3(2x-3)
Ai giúp mk đi mk sắp nát rồi
1,Cho a>=-1, n thuộc N*. Chứng minh (1+a)n>= 1+an
2, Cho n thuộc N, a+b> 0. Chứng minh (a+b)n/2=<(an+bn)/2
Ai giúp mình với, cảm ơn trước nhé!
chứng minh rằng với mọi n thuộc Z : n2 - n chia hết cho 2
\(n^2\)- n = nn - n.1 = n . ( n - 1)
Mà n và n-1 là 2 số tự nhiên liên tiếp hay n và n-1 là một số lẻ hoặc một số chẵn
\(\Rightarrow\) n chia hết cho 2 hoặc (n-1) chia hêt cho 2
\(\Rightarrow\) n.(n-1) chia hết cho 2 hay \(n^2\)- n chia hết cho 2
chung minh 99999+11111*căn3 khong viet duoc duoi dang (a+b*căn3)^2
chung minh 99999+11111*căn3 khong viet duoc duoi dang (a+b*căn3)^2
Giả sử tồn tại A, B thuộc Z để có đẳng thức
99999 + 11111\(\sqrt{3}\) = (a + b\(\sqrt{3}\))^2
=> 99999 + 11111\(\sqrt{3}\) = A^2 + 3B^2 + 2AB\(\sqrt{3}\)
Do do\(\sqrt{3}\) = 99999-A^2 - 3B^2/11111 - 2AB
Là số hữu tỉ ,vô lý
\(\Rightarrow\)Ket luan
chứng minh m.n.(m^2.n^2) chia hết cho 6 với mọi m;n thuộc Z
Ta có : m.n( m2.n2 )
= m.n [( m2 - 1 ) - ( n2 - 1)]
= m( m2 - 1 )n - mn( n2 - 1 )
= ( m - 1 )m( m + 1 )n - m( n - 1 )n( n + 1 )
Ta thấy: * ( m - 1) ; m và ( m + 1) là ba số nguyên liên tiếp
=> ( m - 1 )m( m + 1 ) chia hết cho 6
=> ( m - 1 )m ( m + 1 )n chia hết cho 6 (1)
* ( n - 1) ; n ; ( n + 1 ) là ba số nguyên liên tiếp
=> ( n - 1)n( n + 1 ) chia hết cho 6
=> m( n - 1 )n( n + 1 ) chia hết cho 6 (2)
Từ (1) và (2) suy ra : ( m - 1)m( m + 1)n - m( n - 1)n( n + 1 ) chia hết cho 6
Vậy m.n( m2.n2 ) chia hết cho 6 (đpcm)
Hok tốt !
Em kiểm tra lại đề và có thể tham khảo 1 cách giải ( lớp 7 có thể hiểu):
Câu hỏi của Luong Ngoc Quynh Nhu - Toán lớp 8 - Học toán với OnlineMath
thế m=n=1 t/m không??? mà c/m như thật vậy?? bạn: Nguyễn Ngọc Minh
1) So sánh các căn sau
a) 2 căn3 - 5 và căn3 -4
b) 5 căn 5 - 2 căn3 và 6+4 căn5
c) 1 - căn3 và căn2 - căn6
d) căn3 - 3 căn2 và -4 căn3 + 5 căn2
e) 3 - 2 căn3 và 2 căn6 -5
\(\sqrt{3}-\frac{5}{2}>\sqrt{3}-4\text{ vì }-\frac{5}{2}>-4\)
\(\Rightarrow2.\left(\sqrt{3}-\frac{5}{2}\right)>\sqrt{3}-4\)
\(\Rightarrow2.\sqrt{3}-5>\sqrt{3}-4\)
b) vì \(\sqrt{5}-\sqrt{12}< 0\), ta có:
\(5\sqrt{5}-2\sqrt{3}=4\sqrt{5}+\sqrt{5}-\sqrt{12}< 4\sqrt{5}< 4\sqrt{5}+6\)
Vậy \(5\sqrt{5}-2\sqrt{3}< 6+4\sqrt{5}\)
c)\(\sqrt{2}-\sqrt{6}=\sqrt{2}.\left(\sqrt{1}-\sqrt{3}\right)>\left(1-\sqrt{3}\right)\)
Vậy \(\sqrt{2}-\sqrt{6}>1-\sqrt{3}\)
cho hình chữ nhật ABCD có diện tích 4 căn3 cm^2. Kẻ AH vuông góc với BD tại H, biết AH=căn3 cm. Tính chiều rộng của hình chữ nhật đã cho
Bài 3 : Tính giá trị của các biểu thức sau :
a, A = ( 100 - 1 ) . ( 100 - 2 ) . ( 100 - 3) . ...... (a thuộc N và tích trên có 100 chữ số)
b, B = 13a cộng 19a cộng 4a - 2b với a cộng b = 100