4. Rút gọn biểu thức\(\frac{x|x-2|}{x^2+8x-20}+12x-3\)
Rút gọn biểu thức \(\frac{x|x-2|}{x^2+8x-20}+12x-3\)
\(A=\)\(\frac{x|x-2|}{x^2+8x-20}+12x-3.\)
\(=\frac{x|x-2|}{\left(x-2\right)\left(x+10\right)}+12x-3\)
Nếu \(x\ge2\Rightarrow x-2\ge0\Leftrightarrow|x-2|=x-2\)
\(\Rightarrow A=\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}+12x-3=\frac{x}{x+10}+12x-3\)
Nếu \(x< 2\Rightarrow x-2< 0\Leftrightarrow|x-2|=-\left(x-2\right)\)
\(\Rightarrow A=\frac{-x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}+12x-3=\frac{-x}{x+10}+12x-3\)
Rút gọn biểu thức
N=\(\frac{xIx-2I}{x^2+8x-20}\)+12x+8
Anh em giải hộ tui ok :v
Rút gọn biểu thức: ((xIx-2I)/(x2+8x-20))+12x-3 _______________
Ta có:\(\frac{\left[x\left(x-2\right)\right]}{x^2+8x-20}+12x-3=\frac{x\left(x-2\right)}{x^2-2x+10x-20}+12x-3\)
\(=\frac{x\left(x-2\right)}{x\left(x-2\right)+10\left(x-2\right)}+12x-3=\frac{x\left(x-2\right)}{\left(x+10\right)\left(x-2\right)}+12x-3\)
\(=\frac{x}{x+10}+12x-3=\frac{x+\left(12x-3\right).\left(x+10\right)}{x+10}=\frac{x+12x^2+120x-3x-30}{x+10}\)
\(=\frac{12x^2+118x-30}{x+10}\)
Rút gọn biểu thức A = \(\sqrt{\dfrac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)
đk: x khác 0
A = \(\sqrt{\dfrac{x^4-6x^2+9+12x^2}{x^2}}+\sqrt{x^2+4x+4-8x}\)
= \(\sqrt{\dfrac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}\)
= \(\sqrt{\dfrac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)
= \(\dfrac{x^2+3}{\left|x\right|}+\left|x-2\right|\)
TH1: x \(\ge2\)
A = \(\dfrac{x^2+3}{x}+x-2\)
= \(\dfrac{x^2+3+x^2-2x}{x}=\dfrac{2x^2-2x+3}{x}\)
TH2: \(0< x< 2\)
A = \(\dfrac{x^2+3}{x}-x+2\)
= \(\dfrac{x^2+3-x^2+2x}{x}=\dfrac{2x+3}{x}\)
TH3: x < 0
A = \(\dfrac{x^2+3}{-x}-x+2\)
= \(\dfrac{-x^2-3}{x}-x+2=\dfrac{-x^2-3-x^2+2x}{x}=\dfrac{-2x^2+2x-3}{x}\)
Rút gọn biểu thức:
N=\(\frac{x\text{|}x-2\text{|}}{x^2+8x-20}\)+\(12x-3\)
Cho biểu thức A = \(\frac{\sqrt{\left(x^2-3\right)^2+12x^2}}{\sqrt{x^2}}+\sqrt{\left(x+2\right)^2-8x^2}\)
a. Rút gọn biểu thức A.
b. Tìm những giá trị nguyên của x sao cho biểu thức A cũng có giá trị nguyên.
Bài 1:Rút gọn biểu thức
a.(x-2)(2x-1)-(2x-3)(x-1)-2
b. x(x+3y+1) -2y (x-1) - (y+x+1)x
Bài 2: Tìm x
a. (14x^3 + 12x^2 -14x) :2x = (x+2) (3x-4)
b. (4x - 5) (6x+1) - (8x+3) (3x-4) =15
Bài 1.
a)
\((x-2)(2x-1)-(2x-3)(x-1)-2\\=2x^2-x-4x+2-(2x^2-2x-3x+3)-2\\=2x^2-5x+2-(2x^2-5x+3)-2\\=2x^2-5x+2-2x^2+5x-3-2\\=(2x^2-2x^2)+(-5x+5x)+(2-3-2)\\=-3\)
b)
\(x(x+3y+1)-2y(x-1)-(y+x+1)x\\=x^2+3xy+x-2xy+2y-xy-x^2-x\\=(x^2-x^2)+(3xy-2xy-xy)+(x-x)+2y\\=2y\)
Bài 2.
a)
\((14x^3+12x^2-14x):2x=(x+2)(3x-4)\\\Leftrightarrow 14x^3:2x+12x^2:2x-14x:2x=3x^2-4x+6x-8\\ \Leftrightarrow 7x^2+6x-7=3x^2+2x-8\\\Leftrightarrow (7x^2-3x^2)+(6x-2x)+(-7+8)=0\\\Leftrightarrow 4x^2+4x+1=0\\\Leftrightarrow (2x)^2+2\cdot 2x\cdot 1+1^2=0\\\Leftrightarrow (2x+1)^2=0\\\Leftrightarrow 2x+1=0\\\Leftrightarrow 2x=-1\\\Leftrightarrow x=\frac{-1}2\)
b)
\((4x-5)(6x+1)-(8x+3)(3x-4)=15\\\Leftrightarrow 24x^2+4x-30x-5-(24x^2-32x+9x-12)=15\\\Leftrightarrow 24x^2-26x-5-(24x^2-23x-12)=15\\\Leftrightarrow 24x^2-26x-5-24x^2+23x+12=15\\\Leftrightarrow -3x+7=15\\\Leftrightarrow -3x=8\\\Leftrightarrow x=\frac{-8}3\\Toru\)
Rút gọn phân thức :
\(\frac{3x^2-12x+12}{x^4-8x}\)
Không ai trả lời buồn quá .
\(\frac{3x^2-12x+12}{x^4-8x}\)
\(=\frac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}\)
\(=\frac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+2^2\right)}\)
\(=\frac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)
Rút gọn biểu thức \(A=\frac{4x}{x^2+2x}+\frac{3}{2-x}+\frac{12x}{x^3-4x}\)
\(A=\frac{4x}{x^2-2x}+\frac{3}{2-x}+\frac{12x}{x^3-4x}\)
\(A=\frac{4x}{x\left(x-2\right)}-\frac{3}{x-2}+\frac{12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{4x\left(x+2\right)-3x\left(x+2\right)+12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x\left(x+2\right)+12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x^2+2x+12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x^2+14x}{x\left(x-2\right)\left(x+2\right)}\)