Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Bảo Phát
Xem chi tiết
Đào Thu Huyền
Xem chi tiết
Siêu Phẩm Hacker
6 tháng 1 2019 lúc 20:40

A B C D E M N I

Haizzz học lâu quá nên quên hết rồi ! sorry

Đào Thu Huyền
Xem chi tiết
Đào Thu Huyền
Xem chi tiết
Sleepy Ash Kuro
Xem chi tiết
Hoàng Ninh
Xem chi tiết
나 재민
1 tháng 1 2019 lúc 9:01

A B C E F D M N

a) Xét \(\bigtriangleup BCE \) và \(\bigtriangleup CBD\) có:

\(EC=BD\left(gt\right)\)

\(\widehat{ECB}=\widehat{CBD}\)(2 góc sole trong do BD//CE)

\(BC-chung\)

\(\implies \bigtriangleup BCE=\bigtriangleup CBD(c.g.c)\)

b) Có: \(\bigtriangleup BCE=\bigtriangleup CBD(cmt)\)

\(\implies EB=CD\)(1)

Có: AB=CD(gt)

\(\Rightarrow\frac{1}{2}AB=\frac{1}{2}CD\Rightarrow EB=CF\)(2)

Từ (1) và (2) \(\implies CD=CF\)

Có: AB=CD(gt)

\(\implies \bigtriangleup ABC\) cân tại A

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)(2 góc ở đáy)

Xét \(\bigtriangleup ECB\) và \(\bigtriangleup FBC\)  có:

\(EB=FC(cmt)\)

\(\widehat{EBC}=\widehat{FCB}\left(cmt\right)\)

\(BC-chung\)

\(\implies \bigtriangleup ECB=\bigtriangleup FBC(c.g.c)\)

\(\implies BF=CE\)(2 cạnh tương ứng)

c) Có: \(\bigtriangleup BCE= \bigtriangleup CBD\)

\(\Rightarrow\widehat{EBC}=\widehat{DCB}\)

Gọi FD giao BC tại N

Xét \(\Delta FCN\) và \(\Delta DCN\) có;

\(CF=CD\)(câu b)

\(\widehat{FCN}=\widehat{DCN}\left(cmt\right)\)

\(CN-chung\)

\(\Rightarrow\Delta FCN=\Delta DCN\left(c.g.c\right)\)

\(\Rightarrow\widehat{CNF}=\widehat{CND}\)(2 góc tương ứng)

Mà \(\widehat{CNF}+\widehat{CND}=180^o\)(2 góc kề bù)

\(\Rightarrow\widehat{CNF}=\widehat{CND}=90^o\Rightarrow FD\perp BC\)

d) Xét \(\Delta EMC\) và \(\Delta DMB\) có:

\(EC=BD\left(gt\right)\)

\(\widehat{ECM}=\widehat{MBD}\)

\(MB=MC\)(vì M-trung điểm BC)

\(\Rightarrow\Delta EMC=\Delta DMB\left(c.g.c\right)\)

\(\Rightarrow\widehat{EMC}=\widehat{DMB}\)(2 góc tương ứng)

Mà \(\widehat{BME}+\widehat{EMC}=180^o\)(2 góc kề bù)

\(\Rightarrow\widehat{BME}+\widehat{DMB}=180^o\)

\(\Rightarrow EM\equiv MD\)

\(\implies E;M;D\) thẳng hàng

_Học tốt_

Trần Thanh Phương
31 tháng 12 2018 lúc 20:18

d) Ta có EC // BD và EC = BD ( tam giác BCE = tam giác CBD )

=> tứ giác BECD là hình bình hành

=> ED giao BC tại trung điểm mỗi đường

Mà M là trung điểm của BC nên M là trung điểm của ED

=> M, E, D thẳng hàng ( đpcm )

Trần Thanh Phương
31 tháng 12 2018 lúc 20:25

Cách lớp 7

d) Ta có BMA + AMC = 1800 (1)

Mặt khác BMA = EMA + BME (2)

C/m tam giác BEM = tam giác CDM 

=> BME = CMD (3)

Từ (2) và (3) => BMA = EMA + CMD (4)

Từ (1) và (4) => EMA + CMD + AMC = 1800

hay EMD = 1800

=> E, M, D thẳng hàng ( đpcm )

Lê Thị Thúy Quỳnh _2
Xem chi tiết
Nguyễn Thùy Trang
Xem chi tiết
Lee Suho
Xem chi tiết