3x=2y=5z và x+y+z=-62
TÌm x,y,z biết:
3x = 2y = 5z và x+y+z = -62
Tôi cần giúp:)
\(3x=2y=5z\)
\(\Rightarrow\dfrac{3x}{30}=\dfrac{2y}{30}=\dfrac{5z}{30}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{6}=\dfrac{x+y+z}{10+15+6}=\dfrac{-62}{31}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{10}=-2\\\dfrac{y}{15}=-2\\\dfrac{z}{6}=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-2\cdot10=-20\\y=-2\cdot15=-30\\y=-2\cdot6=-12\end{matrix}\right.\)
Ta có: \(3x=2y=5z\)
\(\Rightarrow\dfrac{x}{\dfrac{1}{3}}=\dfrac{y}{\dfrac{1}{2}}=\dfrac{z}{\dfrac{1}{5}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau và \(x+y+z=-62\), ta được:
\(\dfrac{x}{\dfrac{1}{3}}=\dfrac{y}{\dfrac{1}{2}}=\dfrac{z}{\dfrac{1}{5}}=\dfrac{x+y+z}{\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{1}{5}}=\dfrac{-62}{\dfrac{31}{30}}=-60\)
\(\Rightarrow\left\{{}\begin{matrix}x=-60\cdot\dfrac{1}{3}=-20\\y=-60\cdot\dfrac{1}{2}=-30\\z=-60\cdot\dfrac{1}{5}=-12\end{matrix}\right.\)
Vậy \(x=-20;y=-30;z=-12\).
Tìm x,y,z biết
\(\frac{x^2}{9}=\frac{y^2}{16}\)và \(^{x^2+y^2=100}\)
3x=2y=5z và x+y+z=-62
a)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> x2=4.9=36 => x=\(\pm6\)
y2=4.16=64 => y\(\pm8\)
Vì \(\frac{x^2}{9}=\frac{y^2}{16}\) nên x và y cùng dấu
Vậy (x;y) thõ mãn là (6;8);(-6;-8)
b)
Theo bài ra ta có: 3x=2y => \(\frac{x}{2}=\frac{y}{3}\) =>\(\frac{x}{10}=\frac{y}{15}\) (1)
2y=5z => \(\frac{y}{5}=\frac{z}{2}\Rightarrow\frac{y}{15}=\frac{z}{6}\) (2)
Từ (1) và (2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{6}=\frac{x+y+z}{10+15+6}=\frac{-62}{31}=-2\)
=> x=(-2).10=-20
y=(-2).15=-30
z=(-2).6=-12
Vậy x=-20; y=-30; z=-12
Giải:
a) Đặt \(\frac{x^2}{9}=\frac{y^2}{16}=k\)
\(\Rightarrow x^2=9k,y^2=16k\)
Mà \(x^2+y^2=100\)
\(\Rightarrow9k+16k=100\)
\(\Rightarrow\left(9+16\right)k=100\)
\(\Rightarrow k.25=100\)
\(\Rightarrow k=4\)
+) \(k=4\Rightarrow x^2=36\Rightarrow x=\pm6;y^2=64\Rightarrow y=\pm8\) ( x, y cùng dấu )
Vậy cặp số \(\left(x;y\right)\) là \(\left(6;8\right);\left(-6;-8\right)\)
b) Ta có: \(3x=2y=5z\Rightarrow\frac{3x}{30}=\frac{2y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{6}=\frac{x+y+z}{10+15+6}=\frac{-62}{31}=-2\)
+) \(\frac{x}{10}=-2\Rightarrow x=-20\)
+) \(\frac{y}{15}=-2\Rightarrow y=-30\)
+) \(\frac{z}{6}=-2\Rightarrow z=-12\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(-20;-30;-12\right)\)
Tìm x,y,z biết 6x 4z 5 2y 5x 6 5z 6y 4và 3x 2y 5z 96 tìm x,y,z biết 6x 4z 5 2y 5x 6 5z 6y 4 và 3x 2y
Tìm x,y,z
a, x/4=y/3=z/9 và x-3y+4z=62
b, x/y=9/7; y/z=7/3 và x-y+z=-15
c, x/y=7/20; y/z=5/8 và 2x+5y-2z=100
d, 3x=2y;7y=5z và x-y+z=32
a) x/4 = y/3 =z/9 và x-3y + 4z = 62
b) x/3=y/4, x/5=z/7 và 2x + 3y - z = 186
c) 6x = 4y = 3z và 2x+3y-5z = -21
d) 3x = 2y , 4x = 2z và x + y + z = 27
Ai nhanh nhất mk sẽ tik
Tìm các số x, y, z biết rằng:
a) x : y : z = 5 : 3 : 4 và x + 2y – z = –126
b) 5x = 2y, 3y = 5z và x + y + z = –970
c) 3x = 4y = 5z và x + y + z = 47
a, Ta có : \(x:y:z=5:3:4\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=-\frac{126}{7}=-18\)
\(x=-90;y=-54;z=-72\)
b, \(5x=2y;3y=5z\Rightarrow\frac{x}{2}=\frac{y}{5};\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=-\frac{970}{10}=-97\)
\(x=-194;y=-485;z=-291\)
c, \(3x=4y=5z\Rightarrow\frac{3x}{60}=\frac{4y}{60}=\frac{5z}{60}\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{47}{47}=1\)
\(x=20;y=15;z=12\)
Tìm x , y , z biết :
a) 3x = 2y ; 7y = 5z và x - y + z = 32
b) 3x = 2y ; 5y = 7z và 3x + 5y - 7z = 42
c) 5x = 2y ; 2x = 3z và x . y = 90
d)2x = 3y = 5z và x + y - z = 95
e) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz = 810
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)
d, \(2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
Vậy : \(\hept{\begin{cases}\frac{x}{15}=5\\\frac{y}{10}=5\\\frac{z}{6}=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=75\\y=50\\z=30\end{cases}}\)
Tìm x,y,z biết :
x/4 = y/3; 3y = 5z và x+y+z = 75
3x = 4y; 2y = 5z và x+y-z = 58
\(\frac{x}{4}=\frac{y}{3};3y=5z\) và x + y + z = 75
Ta có: \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}\\3y=5z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{3}\end{cases}}\)
=> \(\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{3}\)
=> \(\frac{x}{20}=\frac{y}{15};\frac{y}{15}=\frac{z}{9}\)
=> \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x+y+z}{20+15+9}=\frac{75}{44}\)
=> \(\hept{\begin{cases}\frac{x}{20}=\frac{75}{44}\\\frac{y}{15}=\frac{75}{44}\\\frac{z}{9}=\frac{75}{44}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{375}{11}\\y=\frac{1125}{44}\\z=\frac{675}{44}\end{cases}}\)
\(3x=4y;2y=5z\)và x + y - z = 58
Ta có : \(\hept{\begin{cases}3x=4y\\2y=5z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{2}\end{cases}}\)
=> \(\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{2}\)
Từ \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}\\\frac{y}{5}=\frac{z}{2}\Rightarrow\frac{y}{15}=\frac{z}{6}\end{cases}\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{6}=\frac{x+y-z}{20+15-6}=\frac{58}{29}=2}\)
=> \(\hept{\begin{cases}\frac{x}{20}=2\\\frac{y}{15}=2\\\frac{z}{6}=2\end{cases}}\Rightarrow\hept{\begin{cases}x=40\\y=30\\z=12\end{cases}}\)
Tìm x,y,z biết
3x=2y;2y=5z và x-y+z=32
Ta có : 3x=2y=2y
=> x/2=y/3
=>x/10=y/15 (1)
2y=5z
=>y/5=z/2
=>y/15=z/6(2)
Từ 1 và 2 =>x/10=y/15=z/6
Tự giải
Ta có : \(3x=2y\Rightarrow x=\frac{2y}{3}\)(1)
\(2y=5z\Rightarrow z=\frac{2y}{5}\)(2)
Thay (1) và (2) vào biểu thức x - y + z = 32 ; ta được:
\(\frac{2y}{3}-y+\frac{2y}{5}=32\Rightarrow10y-15y+6y=480\Rightarrow y=480\)
Với \(y=480\Rightarrow x=\frac{2.480}{3}=320;z=\frac{2.480}{5}=192\)
KL :