Tính một cách hợp lí
\(\left(1^3+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).\left(3^8-81^2\right)\)
tính nhanh
a)\(\left(8^{2019}-8^{2018}\right):\left(8^{2016}.8^2\right)\)
b)\(\left(1^2+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+3^4\right).\left(3^8-81^2\right)\)
a) \(\left(8^{2019}-8^{2018}\right):\left(8^{2016}.8^2\right)\)
\(=8^{2018}\left(8-1\right):8^{2016+2}\)
\(=8^{2018}.7:8^{2018}=7\)
b) Em tham khảo link : Câu hỏi của ✽❤Girl cute❤✽ - Toán lớp 6 - Học toán với OnlineMath
Tính :
\(\left(1^2+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).\left(3^8-81^2\right)\)
\(\left(1^2+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).\left(3^8-81^2\right)\)
Xét \(3^8-81^2=3^8-\left(3^4\right)^2=3^8-3^8=0\)
Mà theo quy tắc, một thừa số ttrong phép nhân bằng 0 thì cả tích đó bằng 0
\(\left(1^2+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).\left(3^8-81^2\right)=0\)
Thực hiện phép tính một cách hợp lí nhất:
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{20}\left(1+2+3+4+...+20\right)\)
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+...+\frac{1}{20}.\frac{20.21}{2}=1+\frac{3}{2}+\frac{4}{2}+...+\frac{21}{2}=1+\frac{24.19}{2}=229\)
Tính bằng cách hợp lí giá trị của biểu thức.
A = \(\left(3-\dfrac{1}{4} +\dfrac{3}{2}\right)\)- \(\left(5+\dfrac{1}{3}-\dfrac{5}{6}\right)\)-\(\left(6-\dfrac{7}{4}+\dfrac{3}{2}\right)\)
B =\(0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}+\dfrac{1}{6}-\dfrac{4}{35}+\dfrac{1}{41}\)
\(A=\left(3-\dfrac{1}{4}+\dfrac{3}{2}\right)-\left(5+\dfrac{1}{3}-\dfrac{5}{6}\right)-\left(6-\dfrac{7}{4}+\dfrac{2}{3}\right)\\ \Rightarrow A=3-\dfrac{1}{4}+\dfrac{3}{2}-5-\dfrac{1}{3}+\dfrac{5}{6}-6+\dfrac{7}{4}-\dfrac{2}{3}\\ \Rightarrow A=\left(3-5-6\right)-\left(\dfrac{1}{4}+\dfrac{7}{4}\right)+\left(\dfrac{3}{2}+\dfrac{5}{6}-\dfrac{2}{3}\right)\\ \Rightarrow A=-8-\dfrac{3}{2}+\dfrac{5}{3}\\ =-\dfrac{47}{6}.\\ B=0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}+\dfrac{1}{6}-\dfrac{4}{35}+\dfrac{1}{41}\)
\(\Rightarrow B=\left(0,5+0,4\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{5}{7}-\dfrac{4}{35}\right)+\dfrac{1}{41}\\ \Rightarrow B=\dfrac{9}{10}+\dfrac{1}{2}+\dfrac{3}{5}+\dfrac{1}{41}\\ \Rightarrow B=2+\dfrac{1}{41}\\ \Rightarrow B=\dfrac{83}{41}.\)
A=(3−
4
1
+
2
3
)−(5+
3
1
−
6
5
)−(6−
4
7
+
3
2
)
⇒A=3−
4
1
+
2
3
−5−
3
1
+
6
5
−6+
4
7
−
3
2
⇒A=(3−5−6)−(
4
1
+
4
7
)+(
2
3
+
6
5
−
3
2
)
⇒A=−8−
2
3
+
3
5
=−
6
47
.
B=0,5+
3
1
+0,4+
7
5
+
6
1
−
35
4
+
41
1
\Rightarrow B=\left(0,5+0,4\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{5}{7}-\dfrac{4}{35}\right)+\dfrac{1}{41}\\ \Rightarrow B=\dfrac{9}{10}+\dfrac{1}{2}+\dfrac{3}{5}+\dfrac{1}{41}\\ \Rightarrow B=2+\dfrac{1}{41}\\ \Rightarrow B=\dfrac{83}{41}.⇒B=(0,5+0,4)+(
3
1
+
6
1
)+(
7
5
−
35
4
)+
41
1
⇒B=
10
9
+
2
1
+
5
3
+
41
1
⇒B=2+
41
1
⇒B=
41
83
.
Tính biểu thức sau :
\(\left(7-\dfrac{1}{2}-\dfrac{3}{4}\right):\left(5-\dfrac{1}{4}-\dfrac{5}{8}\right)\)
Tính một cách hợp lí :
\(065.78+2\dfrac{1}{5}.2020+0,35.78-2,2.2020\)
a: \(=\dfrac{28-2-3}{4}:\dfrac{40-2-5}{8}=\dfrac{23}{4}\cdot\dfrac{8}{33}=\dfrac{46}{33}\)
b: =78(0,65+0,35)+2020(2,2-2,2)
=78*1=78
Tính biểu thức sau một cách Hợp lý :
\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
Áp dụng HĐT đáng nhớ :
\(\left(a-b\right)\left(a+b\right)=a^2-b^2\) . Ta có :
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^{32}-1\right)\left(3^{32}+1\right)=3^{64}-1\)
\(\Rightarrow A=\frac{3^{64}-1}{2}\)
Chúc bạn học tốt !!!
Tính một cách hợp lí :
\(4\frac{3}{4}+\left(0,37\right)+\frac{1}{8}+\left(-1,28\right)+\left(-2,5\right)+3\frac{1}{2}\)
\(\frac{\frac{5}{22}+\frac{3}{13}-\frac{1}{2}}{\frac{4}{13}-\frac{2}{11}+\frac{3}{2}}\)
trình bày cách tính nhanh các phép tính sau đây
a)\(\frac{2^8\cdot6}{3^3\cdot5^4}:\frac{8^3\cdot9}{5^3\cdot3^3}-\left(2^{14}+3^{19}\right)\cdot\left(3^{81}+5^{64}\right)\left(2^4-4^2\right)\)
\(\frac{2^8\times6}{3^3\times5^4}\div\frac{8^3\times9}{5^3\times3^3}-\left(2^{14}+3^{19}\right)\left(3^{81}+5^{64}\right)\left(2^4-4^2\right)\)
\(=\frac{2^9\times3}{3^3\times5^4}\times\frac{5^3\times3^3}{2^9\times3^2}-\left(2^{14}+3^{19}\right)\left(3^{81}+5^{64}\right)\left(2^4-2^4\right)\)
\(=\frac{2^9\times3^4\times5^3}{3^5\times5^4\times2^9}-\left(2^{14}+3^{19}\right)\left(3^{81}+5^{64}\right)\times0\)
\(=\frac{1}{3\times5}-0\)
\(=\frac{1}{15}\)
Tính các biểu thức sau 1 cách hợp lí nhất :
A/ \(\left(10\frac{3}{4}+3\frac{4}{5}\right)-\left(5\frac{3}{4}-1\frac{1}{5}\right)\)
b/ \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)........\left(1-\frac{1}{2007}\right)\)
A/ \(\left(10\frac{3}{4}+3\frac{4}{5}\right)-\left(5\frac{3}{4}-1\frac{1}{5}\right)\)
\(=\left(10\frac{3}{4}-5\frac{3}{4}\right)+\left(3\frac{4}{5}+1\frac{1}{5}\right)\)
\(=5+5\)
\(=10\)
chúc bạn học tốt nha