1. Cho tam giác ABC có góc A nhọn, đường cao BH,CK. CMR: nếu AB>AC thì BH>CK
Cho tam giác ABC có góc B bằng góc C (góc A nhọn). Từ B hạ BH vuông góc với AC, từ C hạ CK vuông góc với AB.
1) CMR: Góc B và góc C cùng nhọn.
2) CMR: BH=CK
Cho tam giác ABC có AB<AC. Hai đường cao BH,CK. CMR BH<CK
Cho tam giác nhọn ABC có 2 đường cao BH và CK
a.CM : AH.AC=AK.AB
b.CM Tam giác AHK đồng dạng với tam giác ABC
c.giả sử BH cắt CK tại I.CM:BI.BH + CI .CK = BC bình phương
d.Nếu AB=IC.tính góc ACB
e.Cho góc A bằng 60 độ,BH = 5cm,AC = 8cm.Tính diện tích tam giác AHK
(k cần kẻ hình đâu)
---làm ơn giúp tớ ik---
Cho tam giác ABC có AC>AB. Kẻ BH vuông góc với AC , CK vuông góc AB . CMR BH+AC>CK+AB
Cho tam giác ABC nhọn . Vẽ BH ⊥ AC( H∈AC) .Vẽ CK ⊥ AB
( K∈AB) . BH cắt CK tại I .
CMR: 𝐴𝐵𝐻 = 𝐴𝐶𝐾
\(\widehat{ABH}+\widehat{A}=90^0\)
\(\widehat{ACK}+\widehat{A}=90^0\)
Do đó: \(\widehat{ABH}=\widehat{ACK}\)
cho tam giác ABC cân tại A, góc A nhọn. kẻ BH vuông góc AC tại H, kẻ CK vuông góc AB tại K. gọi D là giao điểm của BH và CK.
a) cmr BH=CK,
2) cmr tam giác DBC cân
3) qua D kẻ đường thẳng cắt đoạn thẳng BK tại E và cắt đoạn Thẳng CH tại F sao cho AE<À. Cmr: DE,DF
Cho tam giác ABC có AC>AB. Kẻ BH vuông góc với AC, CK vuông góc với AB. CMR: AC-AB>CK-BH
Ta có: \(\left(AC+BH\right)^2=AC^2+BH^2+2AC.BH\)
\(\left(AB+CK\right)^2=AB^2+CK^2+2AB.CK\)
Ta dễ thấy do AB < AC nên BH < CK
Vậy thì \(\left(AC+BH\right)^2-\left(AB+CK\right)^2=AC^2-CK^2-\left(AB^2-BH^2\right)\)
\(=AK^2-AH^2>0\)
\(\Rightarrow\left(AC+BH\right)^2>\left(AB+CK\right)^2\)
\(\Rightarrow AC+BH>AB+CK\)
\(\Rightarrow AC-AB>CK-BH\)
Cho tam giác ABC có AC>AB . Kẻ BH vuông góc với AC , CK vuông góc với AB . CMR : BH+AC>CK+AB
cho tam giác ABC có ba góc nhọn. Gọi BH, CK lần lượt là các đường cao kẻ từ B và C( H thuộc AC, K thuộc AB). Biết BH cắt CK tại M và AM cắt BC tại N. Chứng minh tứ giác HKBC nội tiếp đường tròn
\(\widehat{BKC}=\widehat{BHC}\left(=90^0\right)\) nên HKBC nội tiếp đường tròn