Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Minh Hằng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 6 2018 lúc 8:32

Chọn C

* Ta có:  trong đó a;b;c không đồng thời bằng 0. Mặt cầu (S) có tâm I (1;2;3) và bán kính R=5.

Do mặt phẳng (P) chứa đường thẳng AB nên ta có:

* Bán kính đường tròn giao tuyến là  trong đó

Để bán kính đường tròn nhỏ nhất điều kiện là d lớn nhất  lớn nhất  lớn nhất.

Coi hàm số  là một phương trình ẩn c ta được

5mc²-2 (4m+1)c+ (8m-3)=0,

phương trình có nghiệm c  lớn nhất

<=> c = 1 => a = 0 => M = 2a + b – c = 1

Phạm Mỹ Duyên
Xem chi tiết
Nguyễn Hoàng Bảo Nhi
28 tháng 4 2020 lúc 8:27

Bài 3 : 

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)

Ta có : 

\(\frac{x}{x+1}=\frac{x}{x+x+y+z}=\frac{x}{\left(x+y\right)+\left(x+z\right)}\)

\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Tương tự ta có:

\(\frac{y}{y+1}\le\frac{1}{4}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\)

\(\frac{z}{z+1}\le\frac{1}{4}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

\(+\frac{1}{4}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{4}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}+\frac{z}{y+z}\right)\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\le\frac{1}{4}.6=\frac{3}{2}\)

Khách vãng lai đã xóa
 Hà Trang
Xem chi tiết
Nhi Trần
20 tháng 2 2018 lúc 21:59
ừ thì lớp 6 =.= tui cũng đang làm đề hsg toán lớp 9 thế này :v
Bin Mèo
Xem chi tiết
*Sakura*
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 6 2017 lúc 15:49

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 12 2018 lúc 9:58

Oanh ca
Xem chi tiết