Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Anh Quân
Xem chi tiết
Omega Neo
Xem chi tiết
Akai Haruma
28 tháng 4 2018 lúc 23:53

Lời giải:

Ta có:
\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}\)

\(S> \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}\)

\(\Leftrightarrow S> \frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{2016-2015}{2015.2016}\)

\(\Leftrightarrow S> \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(\Leftrightarrow S> \frac{1}{2}-\frac{1}{2016}=\frac{1007}{2016}\)

--------------------------

\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}\)

\(S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{2014}{2015}\)

\(\Leftrightarrow S< \frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{2015-2014}{2014.2015}\)

\(\Leftrightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{2014}-\frac{1}{2015}\)

\(\Leftrightarrow S< 1-\frac{1}{2015}=\frac{2014}{2015}\)

Vậy ta có đpcm.

Phạm Hồng Khánh Lnh
Xem chi tiết
Nguyễn Ngọc Việt Ý
Xem chi tiết
Dưa Hấu
Xem chi tiết
LazyGirl_1111
14 tháng 3 2022 lúc 13:25

Ta có : \(\dfrac{1}{2^2}\)<\(\dfrac{1}{1.2}\)\(\dfrac{1}{3^2}\)<\(\dfrac{1}{2.3}\);.....;\(\dfrac{1}{2016^2}\)<\(\dfrac{1}{2015.2016}\)

⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\)\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{2015.2016}\)

⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\) < 1 - \(\dfrac{1}{2016}\)\(\dfrac{2015}{2016}\) (ĐCPCM)

Phạm Thị Minh Tâm
Xem chi tiết
Hoàng Thị Ngọc Linh
23 tháng 7 2016 lúc 17:08

Ta có:\(B=1+2015+2015^2+...+2015^{99}\)

=>\(2015B=2015+2015^2+2015^3+...+2015^{100}\)

=>\(2015B-B=2014B=2015^{100}-1\)

=>\(2014B+1=2015^{100}=\left(2015^{50}\right)^2\)

Vì 2014B + 1 là bình phương của một số tự nhiên

Vậy 2014B + 1 là số chính phương

Nguyễn Thanh Hiền
Xem chi tiết
Võ Đông Anh Tuấn
23 tháng 7 2016 lúc 17:19

Ta có : \(B=1+2015+2015^2+...+2015^{99}\)

\(\Rightarrow2015B=2015+2015^2+2015^3+...+2015^{100}\)

\(\Rightarrow2015B-B=2014B=2015^{100}-1\)

\(\Rightarrow2014B+1=2015^{100}=\left(2015^{50}\right)^2\)

Vì : \(2014B+1\) là bình phương của một số tự nhiên

Vậy \(2014B+1\) là số chính phương

Lê Nguyên Hạo
23 tháng 7 2016 lúc 17:16

khó wá

Bảo Ngọc Nguyễn
23 tháng 7 2016 lúc 17:22

2014B+1= (2015-1)B+1 =2015B-B +1 = 2015^100=(2015^50)^2

VẬY 2014B+1 LÀ SỐ CHÍNH PHƯƠNG

Bùi Thị Ngọc Anh
Xem chi tiết
 Mashiro Shiina
19 tháng 12 2017 lúc 15:02

\(vt=1+2015+2015^2+2015^3+2015^4+2015^5+2015^6+2015^7\)

\(=\left(1+2015\right)+\left(2015^2+2015^3\right)+\left(2015^4+2015^5\right)+\left(2015^6+2015^7\right)\)

\(=1\left(1+2015\right)+2015^2\left(1+2015\right)+2015^4\left(1+2015\right)+2015^6\left(1+2015\right)\)

\(=\left(2015+1\right)\left(1+2015^2+2015^4+2015^6\right)\)

\(=2016\left(1+2015^2+2015^4+2015^6\right)\)

\(=2016\left[\left(1+2015^2\right)+\left(2015^4+2015^6\right)\right]\)
\(=2016\left[1\left(1+2015^2\right)+2015^{2014}\left(1+2015^2\right)\right]=vp\left(đpcm\right)\)

\(=2016\left(1+2015^{2014}\right)\left(1+2015^{2012}\right)\)

Minh Tài
Xem chi tiết