tìm số tự nhiên a và b biết a x b = 2400 và bội chung nhỏ nhất của a và b là =120
Tìm 2 số tự nhiên a và b biết bội chung nhỏ nhất của a và b là 300 ,ước chung lớn nhất của a và b là 15
Ta có: UCLN(a;b) = 15 => a = 15m và b = 15n (Với m ; n khác 0)
Ta lại có: BCNN(a;b) = 300
Mà: a . b = BCNN(a;b) . UCLN(a;b)
=> a . b = 300 . 15 = 4500 (*)
Ta thay a = 15m và b = 15n vào (*) ta được: 15m . 15n = 4500
=> 225 . mn = 4500 => mn = 4500 : 225 => mn = 20
Do: m và n là sso tự nhiên nên mn = 4 . 5 = 1 . 20
+) Với m = 4 và n = 5 thì a = 60 và b = 75
+) Với m = 5 và n = 4 thì a = 75 và b = 60
+) Với m = 1 và n = 20 thì a = 15 và b = 300
+) Với m = 20 và n = 1 thì a = 300 và b = 15
Ta có : ƯCLN ( a , b ) = 15 => a = 15m và b = 15n ( m ; n \(\ne\) 0 ).
Ta lại có : BCNN ( a ; b ) = 300
Mà a . b = BCNN ( a ; b ) . ƯCLN ( a ; b )
=> a . b = 300 . 15 = 4500 (*)
Thay a = 15m và b = 15n vào (*) ta được :
15m . 15n = 4500
<=> ( 15 . 15 ) mn = 4500
<=> 225mn = 4500
<=> mn = 4500 : 225
<=> mn = 20
Do m và n là số tự nhiên nên mn = 4 . 5 = 1 . 20
=> Ta có bảng :
m | 4 | 5 | 1 | 20 |
n | 5 | 4 | 20 | 1 |
a | 60 | 75 | 15 | 300 |
b | 75 | 60 | 300 | 15 |
Có 2 số tự nhiên cần tìm là a và b \(\left(a\ge b\right)\)
Ta có :
\(BCNN\left(a,b\right)\cdotƯCLN\left(a,b\right)=a\cdot b\)
\(\Rightarrow300\cdot15=a\cdot b\)
\(\Rightarrow a\cdot b=4500\)
\(\Rightarrow a=15m;b=15n\left(m,n=1\right);\left(m>n\right)\)
Lại có :
\(a\cdot b=4500\)
\(\Rightarrow15m\cdot15n=4500\)
\(\Rightarrow15\cdot15\cdot\left(m\cdot n\right)=4500\)
\(\Rightarrow225\cdot\left(m\cdot n\right)=4500\)
\(\Rightarrow m\cdot n=4500:225\)
\(\Rightarrow m\cdot n=20\)
Ta sẽ có được bảng sau :
\(m\) | \(5\) | \(20\) |
\(n\) | \(4\) | \(1\) |
\(a\left(a=15m\right)\) | \(75\) | \(300\) |
\(b\left(b=15n\right)\) | \(60\) | \(15\) |
Tìm 2 số tự nhiên a và b biết bội chung nhỏ nhất của a và b là 300 ,ước chung lớn nhất của a và b là 15
Ta có: \(ƯCLN\left(a,b\right)=15\Rightarrow a=15m\) và \(b=15n\)(Với \(m;n\ne0\))
Ta lại có: \(BCNN\left(a,b\right)=300\)
Mà: a . b = BCNN(a;b) . UCLN(a;b)
=> a . b = 300 . 15 = 4500 (*)
Ta thay a = 15m và b = 15n vào (*) ta được: 15m . 15n = 4500
=> 225 . mn = 4500 => mn = 4500 : 225 => mn = 20
Do: m và n là sso tự nhiên nên mn = 4 . 5 = 1 . 20
+) Với m = 4 và n = 5 thì a = 60 và b = 75
+) Với m = 5 và n = 4 thì a = 75 và b = 60
+) Với m = 1 và n = 20 thì a = 15 và b = 300
+) Với m = 20 và n = 1 thì a = 300 và b = 15
Ta có: ƯCLN(a,b)=15⇒a=15mƯCLN(a,b)=15⇒a=15m và b=15nb=15n(Với m;n≠0m;n≠0)
Ta lại có: BCNN(a,b)=300BCNN(a,b)=300
Mà: a . b = BCNN(a;b) . UCLN(a;b)
=> a . b = 300 . 15 = 4500 (*)
Ta thay a = 15m và b = 15n vào (*) ta được: 15m . 15n = 4500
=> 225 . mn = 4500 => mn = 4500 : 225 => mn = 20
Do: m và n là sso tự nhiên nên mn = 4 . 5 = 1 . 20
+) Với m = 4 và n = 5 thì a = 60 và b = 75
+) Với m = 5 và n = 4 thì a = 75 và b = 60
+) Với m = 1 và n = 20 thì a = 15 và b = 300
+) Với m = 20 và n = 1 thì a = 300 và b = 15
Tìm 2 số tự nhiên a và b biết bội chung nhỏ nhất của a và b là 300 ,ước chung lớn nhất của a và b là 15
Do ƯCLN(a; b) = 15 => a = 15.m; b = 15.n (m;n)=1
=> BCNN(a; b) = 15.m.n = 300
=> m.n = 300 : 15 = 20
Giả sử a > b => m > n mà (m;n)=1 => \(\left[\begin{array}{nghiempt}m=20;n=1\\m=5;n=4\end{array}\right.\)
+ Với m = 20; n = 1 thì a = 20.15 = 300; b = 1.15 = 15
+ Với m = 5; n = 4 thì a = 5.15 = 75; b = 4.15 = 60
Vậy các cặp giá trị (a;b) thỏa mãn đề bài là: (300;15) ; (75;60) ; (60;75) ; (15;300)
tìm 2 số tự nhiên a và b biết bội chung nhỏ nhất a và b là 300 và ước chung lớn nhất của a và b là 15
\(ab=\left[a,b\right]\left(a,b\right)=300.15=450\)
\(\left(a,b\right)=15\)nên ta đặt \(a=15m,b=15n\)khi đó \(\left(m,n\right)=1\).
\(ab=15m.15n=225mn=4500\Leftrightarrow mn=20\)
Vì \(\left(m,n\right)=1\)nên ta có bảng giá trị:
m | 1 | 4 | 5 | 20 |
n | 20 | 5 | 4 | 1 |
a | 15 | 60 | 75 | 300 |
b | 300 | 75 | 60 | 15 |
1) Tìm hai số tự nhiên a và b biết bội chung nhỏ nhất của a và b là 420, ước chung lớn nhất của a và b là 21 mà a + 21 = b
Lời giải:
Vì $ƯCLN(a,b)=21$ nên đặt $a=21x, b=21y$ với $x,y$ là stn, $x,y$ nguyên tố cùng nhau.
Ta có:
$BCNN(a,b)=21xy=420\Rightarrow xy=20$ (1)
$a+21=b$
$\Rightarrow 21x+21=21y$
$\Rightarrow x+1=y$ (2)
Từ $(1); (2)$ và $x,y$ là 2 số nguyên tố cùng nhau nên $x=4, y=5$
$\Rightarrow a=21x=21.4=84; b=21y=21.5=105$
tìm 2 số tự nhiên a và b biết bội chung nhỏ nhất của a và b là 300 , ước chung lớn nhất của a và b là 15; a+15=b
Ta có:
\(ƯCLN\left(a,b\right)=15\Rightarrow a=15m\) và \(b=15n\left(m;n\ne0\right)\)
Ta lại có: \(BCNN\left(a,b\right)=300\)
Mà: \(a.b=BCNN\left(a;b\right)\)
\(UCLN\left(a;b\right)\)
\(\Rightarrow a.b=300.15=4500\)(*)
Ta thay \(a=15m\) và \(b=15n\) vào (*) ta được: \(15m.15n=4500\)
\(\Rightarrow225.mn=4500\Rightarrow mn=4500\div225\Rightarrow mn=20\)
Do: m và n là số tự nhiên nên \(mn=4.5=1.20\)
+) Với m = 4 và n = 5 thì a = 60 và b = 75
+) Với m = 5 và n = 4 thì a = 75 và b = 60
+) Với m = 1 và n = 20 thì a = 15 và b = 300
+) Với m = 20 và n = 1 thì a = 300 và b = 15
tìm số tự nhiên a và b , biết ước chung lớn nhất của a,b là 12, bội chung nhỏ nhất của a,b là 336
vì ƯCLN(a,b)=12
=>a=12m , b=12n (ƯCLN(m,n)=1)
BCNN(a,b)=336
=>12m.n=336
=>m.n=28
có:
m=1 , n=28 =>a=12 , b=336
m=4 n = 7 =>a=48 , b=84
vậy hai số phải tìm a và b là:(12 và 336) , (48 và 84)
câu 1 Tìm số tự nhiên nhỏ nhất biết số đó chia 3,4,6,7 dư 2 nhưng chia 5 dư 4
câu 2
a, tìm số tự nhiên a,b biết ước chung lớn nhất (a,b)=18 và a.b=3888
b, bội chung nhỏ nhất 9 (a,b)= 120 và a.b=1200
câu 3
tìm số tự nhiên nhỏ nhất chia 17 dư 5 và chia 19 dư 12
a) Tìm các số tự nhiên n sao cho 6 ⁝ (n+1).
b) Biết hai số 23.3a và 2b.35 có ước chung lớn nhất là 22.35 và bội chung nhỏ nhất là 23.36. Hãy tìm giá trị của các số tự nhiên a và b.
a) Vì nên (n + 1) ∈ Ư(6) = {1; 2; 3; 6}
Ta có bảng sau:
n + 1 | 1 | 2 | 3 | 6 |
n | 0 | 1 | 2 | 5 |
Vì n là số tự nhiên nên n ∈ {0; 1; 2; 5}
Vậy n ∈ {0; 1; 2; 5}.
b) Gọi x = 23.3a và y = 2b.35
Ta có tích của hai số là tích của ƯCLN và BCNN của hai số đó.
Ta có: x. y = ƯCLN(x, y). BCNN(x, y)
Vì ước chung lớn nhất của hai số là và bội chung nhỏ nhất của hai số là 23.36.
Vì thế 3 + b = 5. Suy ra b = 5 – 3 = 2
a + 5 = 11. Suy ra a = 11 – 5 = 6
Vậy a = 6; b = 2.
Gọi x = 23.3a và y = 2b.35
Ta có: x. y = ƯCLN(x, y). BCNN(x, y)
Vì ước chung lớn nhất của hai số là 22.35 và bội chung nhỏ nhất của hai số là 23.36
Ta được x.y=
Mà xy =
Ta được 5=3+b và 11=a+5
Vậy b=2 và a=6