Cho x,y ≥0 và x+y=1. Tìm GTLN của:
A= \(\frac{x}{y+1}+\frac{y}{x+1}\)
Cho xy=1và x;y>0. Tìm GTLN của:
\(A=\frac{1}{x^2+y^4}+\frac{1}{x^4+y^2}\)
\(A=\frac{x^2y^2}{x^2.xy+y^4}+\frac{x^2y^2}{x^4+xy.y^2}=\frac{\left(\frac{x}{y}\right)^2}{\left(\frac{x}{y}\right)^3+1}+\frac{\left(\frac{x}{y}\right)^2}{\frac{x}{y}.\left[\left(\frac{x}{y}\right)^3+1\right]}\)
\(=\frac{t^2}{t^3+1}+\frac{t^2}{t\left(t^3+1\right)}\text{ }\left(t=\frac{x}{y}>0\right)\)
\(=\left(\frac{t^2+t}{t^3+1}-1\right)+1=-\frac{\left(t-1\right)^2\left(t+1\right)}{t^3+1}+1\le1\forall t>0\)
Đẳng thức xảy ra khi \(t=1\Leftrightarrow x=y=1.\)
Vậy GTLN của A là 1.
\(A=\frac{1}{x^2+\frac{1}{x^4}}+\frac{1}{x^4+\frac{1}{x^2}}\)
Áp dụng BĐT côsi
\(x^2+\frac{1}{x^4}\ge\frac{2}{x}\)
\(x^4+\frac{1}{x^2}\ge2x\)
=>\(A\le\frac{x}{2}+\frac{1}{2x}\)
Áp dụng BĐT cosi
\(\frac{x}{2}+\frac{1}{2x}\ge2\sqrt{\frac{x}{4x}}=1\)
Dấu = xảy ra <=>x=y=1
Chắc chắn 100% nha
Tick đi nào ae
cho x,y,z>0 thoả mãn xyz=1. Tìm GTLN của:
\(A=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)
cm bai toan phu
a3+b3\(\ge ab\left(a+b\right)\)
ta co \(\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)
=>bai toan phu dung
=>\(a^3+b^3\ge ab\left(a+b\right)\)
=>a3+b3+1\(\ge ab\left(a+b+c\right)\)
=>A\(\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{z}{\left(x+y+z\right)}+\frac{x}{\left(x+y+z\right)}+\frac{y}{\left(x+y+z\right)}=1\)
MaxA=1<=>x=y=z=1
Need some helps!
1. Cho a, b, c > 0 tm a + b + c = 1. Tìm gtln của bt sau:
\(P=\sqrt{a+2b+3c}+\sqrt{b+2c+3a}+\sqrt{c+2a+3b}.\)
2. Cho x, y > 1 tm x + y = 3. Tìm gtnn của bt sau:
\(P=\frac{x}{x-1}.\frac{y}{y-1}\)
1) Áp dụng BĐT bunhia, ta có
\(P^2\le3\left(6a+6b+6c\right)=18\Rightarrow P\le3\sqrt{2}\)
Dấu = xảy ra <=> a=b=c=1/3
Cho x+y=1 , x>0 , y>0 . Tìm giá trị nhỏ nhất của biểu thức P= \(\frac{a^2}{x}+\frac{b^2}{y}\) (a và b là hằng số dương đã cho)
Áp dụng bđt \(\frac{m^2}{p}+\frac{n^2}{q}\ge\frac{\left(m+n\right)^2}{p+q}\) được
\(P=\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)
Dấu "=" khi ay = bx
Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :
\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .
Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :
\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .
Bài 4 : Cho các số dương a,b,c . Chứng minh :
\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1
Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)
Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :
\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
neu de bai bai 1 la tinh x+y thi mik lam cho
đăng từng này thì ai làm cho
We have \(P=\frac{x^4+2x^2+2}{x^2+1}\)
\(\Rightarrow P=\frac{x^4+2x^2+1+1}{x^2+1}\)
\(=\frac{\left(x^2+1\right)^2+1}{x^2+1}\)
\(=\left(x^2+1\right)+\frac{1}{x^2+1}\)
\(\ge2\sqrt{\frac{x^2+1}{x^2+1}}=2\)
(Dấu "="\(\Leftrightarrow x=0\))
Vậy \(P_{min}=2\Leftrightarrow x=0\)
Bài 1: cho x,y thoả mãn 0<x<2 và 4<y<5 và x+y=6
Tìm Min của P= \(\frac{1}{x}+\frac{1}{y}\)
cac ban oi giup minh di minh chuan bi di hoc roi. giup minh nhe.
cho biết A=\(\frac{2}{x}\)-\(\frac{^{x^2}}{x^2+xy}\)-\(\frac{x^2-y^2}{x.y}\)-\(\frac{y^2}{x.y+y^2}\).\(\frac{x+y}{x^2+xy+y}\)
a,rút gọn A và tìm điều kiên của x,y để A xác định
b,tính gtri của A tại x=2,y=\(\frac{1}{2}\);x=1,y=1
c, tìm x \(\in\)z để A =1
Cho x,y,z thuộc đoạn [0;1] và x+y+z=1 tìm GTLN của A=√(8x^2+1)+√(8z^2+1)+√(8y^2+1)
Cái này dễ :v, Mincopski thẳng cánh :v
\(A=\sqrt{8x^2+1}+\sqrt{8y^2+1}+\sqrt{8z^2+1}\)
\(=\sqrt{\left(\sqrt{8}x\right)^2+1}+\sqrt{\left(\sqrt{8}y\right)^2+1}+\sqrt{\left(\sqrt{8}z\right)^2+1}\)
\(\ge\sqrt{\left(\sqrt{8}x+\sqrt{8}y+\sqrt{8}z\right)^2+\left(1+1+1\right)^2}\)
\(\ge\sqrt{\left(\sqrt{8}\left(x+y+z\right)\right)^2+9}\)
\(\ge\sqrt{\sqrt{8}^2+9}=\sqrt{8+9}=17\)
Xảy ra khi \(x=y=z=\frac{1}{3}\)
Done !! :3
xem lai đi bạn ơi đây là timg GTLN chứ không phải GTNN bạn nhé. mà mình chưa thấy sử dụng x,y,z thuộc đoạn 0;1 nhỉ
Tìm GTLN và GTNN của hàm số:
\(y=\frac{1}{2}\sin x+\frac{\sqrt{3}}{2}\cot x\)
\(y=\sqrt{\sin^2x+2\cot^2x}\)