\(\frac{y+\text{z}+1}{x}=\frac{x+\text{z}+2}{y}\frac{x+y-3}{\text{z}}=\frac{1}{x+y+\text{z}}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\frac{1}{\text{x}^2+yz}+\frac{1}{y^2+\text{x}z}+\frac{1}{z^2+\text{x}y}\le\frac{1}{2}\left(\frac{1}{\text{x}y}+\frac{1}{yz}+\frac{1}{\text{x}z}\right)\)
đk: x;y;z dương nhé
áp dụng bđt cosi ta có:
\(x^2+yz>=2\sqrt{x^2yz}=2x\sqrt{yz};y^2+xz>=2\sqrt{y^2xz}=2y\sqrt{xz};z^2+xy=2\sqrt{z^2xy}=2z\sqrt{xy}\)
\(\Rightarrow\frac{1}{x^2+yz}< =\frac{1}{2x\sqrt{yz}};\frac{1}{y^2+xz}< =\frac{1}{2y\sqrt{xz}};\frac{1}{z^2+xy}< =\frac{1}{2z\sqrt{xy}}\)
\(\Rightarrow\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}< =\frac{1}{2x\sqrt{yz}}+\frac{1}{2y\sqrt{xz}}+\frac{1}{2z\sqrt{xy}}=\frac{1}{2}\left(\frac{1}{x\sqrt{yz}}+\frac{1}{y\sqrt{xz}}+\frac{1}{z\sqrt{xy}}\right)\left(1\right)\)
áp dụng bđt cosi ta có:
\(\frac{1}{xy}+\frac{1}{xz}>=2\cdot\sqrt{\frac{1}{xy}\cdot\frac{1}{xz}}=\frac{2}{x\sqrt{yz}};\frac{1}{xy}+\frac{1}{yz}>=2\cdot\sqrt{\frac{1}{xy}\cdot\frac{1}{yz}}=\frac{2}{y\sqrt{xz}};\)
\(\frac{1}{yz}+\frac{1}{xz}>=2\cdot\sqrt{\frac{1}{yz}\cdot\frac{1}{xz}}=\frac{2}{z\sqrt{xy}}\)
\(\Rightarrow\frac{1}{xy}+\frac{1}{xz}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{yz}+\frac{1}{xz}=\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}>=\frac{2}{x\sqrt{yz}}+\frac{2}{y\sqrt{xz}}+\frac{2}{z\sqrt{xy}}\)
\(\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}>=\frac{1}{x\sqrt{yz}}+\frac{1}{y\sqrt{xz}}+\frac{1}{z\sqrt{xy}}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)>=\frac{1}{2}\left(\frac{1}{x\sqrt{yz}}+\frac{1}{y\sqrt{xz}}+\frac{1}{z\sqrt{xy}}\right)\left(2\right)\)
từ \(\left(1\right);\left(2\right)\Rightarrow\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}>=\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\left(đpcm\right)\)
dấu = xảy ra khi x=y=z
nhầm từ \(\left(1\right);\left(2\right)\Rightarrow\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}< =\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)
cho các số x,y,z khác 0 va thoả mãn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0.t\text{ính}gi\text{á}tr\text{ị}bi\text{ểu}th\text{ức}P=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\\\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\\\frac{1}{x}+\frac{1}{z}=-\frac{1}{y}\end{cases}}\)
\(P=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)
\(=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)
\(=y\left(\frac{1}{x}+\frac{1}{z}\right)+x\left(\frac{1}{z}+\frac{1}{y}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=y.\frac{-1}{y}+x.\frac{-1}{x}+z.\frac{-1}{z}\)
\(=-1-1-1=-3\)
P+3=\(\frac{y+z}{x}+1+\frac{x+z}{y}+1+\frac{x+y}{z}+1=\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{x}\)
P+3=\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0.\left(x+y+z\right)=0\)
=> P=\(-3\)
Chuc ban hoc tot
Ta có : \(P=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)
\(\Rightarrow P+3=\frac{y+z}{x}+1+\frac{z+x}{y}+1+\frac{x+y}{z}+1\)
\(\Rightarrow P+3=\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}\)
\(\Rightarrow P+3=\left(x+y+z\right).\frac{1}{x}+\left(x+y+z\right).\frac{1}{y}+\left(x+y+z\right).\frac{1}{z}\)
\(\Rightarrow P+3=\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Rightarrow P+3=\left(x+y+z\right).0\)
\(\Rightarrow P+3=0\)
\(\Rightarrow P=-3\)
Vậy P = - 3
\(Cho\frac{2x+y+z+t}{x}\text{=}\frac{x+2y+z+t}{y}\text{=}\frac{x+y+2z+t}{z}\text{=}\frac{x+y+z+2t}{t}\)
Tính S=\(\text{(\frac{x+y}{z+t})^{2013}+\text{(\frac{y+z}{x+t})^{2014}+\text{(\frac{z+t}{x+y})^{2015}}}}+\text{(\frac{x+t}{y+z})}^{2016}\)
\(\frac{x}{y+z+1}\text{=}\frac{y}{x+z+1}\text{=}\frac{z}{x+y-2}\)
Tìm x,y,z. Ai nhanh tick cho
*Xét trường hợp x+y+z = 0
Áp dụng tính chất dãy tỉ số bằng nhau
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = x+y+z/(y+z+1+x+z+1+x+y-2)=0
=>x=y=z=0
*Xét x+y+z khác 0, tính chất tỉ lệ thức:
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2
=> x+y+z = 1/2
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2
Vậy có các cặp (x,y,z) thỏa mãn là: (0,0,0) và (1/2,1/2,-1/2)
Tìm x, y, z
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}v\text{à}2\text{x}+3y-z=186\)
b, 3x=2y ; 7y = 5z và x-y+z = 32
c,\(\frac{2\text{x}}{3}=\frac{3y}{4}=\frac{4\text{z}}{5}v\text{à}x+y+z=49\)
d, \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}v\text{à}x^2+y^2+z^2=14\)
e, x+y=x:y= 3.(x-y)
b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng dãy tỉ số bằng nhau :
\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x = 2 . 10 = 20
y = 2 . 15 = 30
z = 2 . 21 = 42
Vậy : .....
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
MSC của y là : 20
Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(2x+3y-z=186\)
\(\Rightarrow2.15+3.20-28=30+60-28=62\)
\(\frac{186}{62}=3\)
x = 3 . 15 = 45
y = 3 . 20 = 60
z = 3 . 28 = 84
Vậy: .....
Cho x,y là các số thực thỏa mãn \(\frac{y+z+1}{x}\text{=}\frac{x+z+2019}{y}\text{=}\frac{x+y-2020}{z}\text{=}\frac{1}{x+y+z}\)
Tính giá trị của biểu thức : \(A\text{=}2016.x+y^{2017}+z^{2017}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2019}{y}=\frac{x+y-2020}{z}=\frac{y+z+1+x+z+2019+x+y-2020}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow2=\frac{1}{x+y+z}\)\(\Rightarrow x+y+z=\frac{1}{2}\)
Ta có:
+) \(\frac{y+z+1}{x}=2\)\(\Rightarrow y+z+1=2x\)\(\Rightarrow x+y+z+1=3x\)\(\Rightarrow\frac{1}{2}+1=3x\)\(\Rightarrow3x=\frac{3}{2}\)\(\Rightarrow x=\frac{1}{2}\)
+) \(\frac{x+z+2019}{y}=2\)\(\Rightarrow x+z+2019=2y\)\(\Rightarrow x+y+z+2019=3y\)\(\Rightarrow\frac{1}{2}+2019=3y\)\(\Rightarrow3y=\frac{4039}{2}\)\(\Rightarrow y=\frac{4039}{6}\)
+) \(\frac{x+y-2020}{z}=2\)\(\Rightarrow x+y-2020=2z\)\(\Rightarrow x+y+z-2020=3z\)\(\Rightarrow\frac{1}{2}-2020=3z\)\(\Rightarrow3z=\frac{-4039}{2}\)\(\Rightarrow z=\frac{-4039}{6}\)
Lại có: \(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{4039}{6}\right)^{2017}+\left(\frac{-4039}{6}\right)^{2017}=4032+\left(\frac{4039}{6}\right)^{2017}-\left(\frac{4039}{6}\right)^{2017}=4032\)
Cho x,y,z là 3 số dương thỏa mãn x+y+z=3
CMR \(\frac{x}{x+\sqrt{3x+\text{y}z}}+\frac{\text{y}}{\text{y}+\sqrt{3\text{y}+zx}}+\frac{z}{z+\sqrt{3z+x\text{y}}}\le1\)
cho x,y,z là các số dương thỏa \(x^2+y^2+z^2=3\)
chứng minh:\(\frac{x^2}{y+2\text{z}}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}+\frac{1}{1+\sqrt{3+2\left(xy+yz+x\text{z}\right)}}\ge\frac{5}{4}\)
+\(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3\)
+\(3+2\left(xy+yz+zx\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\le9\)
\(\Rightarrow B=\frac{1}{1+\sqrt{3+2\left(xy+yz+zx\right)}}\ge\frac{1}{1+3}=\frac{1}{4}\)
+\(A=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)
Áp dụng bđt Bunhiacopxki
\(x^2y+y^2z+z^2x=x.xy+y.yz+z.zx\le\sqrt{x^2+y^2+z^2}.\sqrt{x^2y^2+y^2z^2+z^2x^2}\)
\(\le\sqrt{x^2+y^2+z^2}.\sqrt{\frac{\left(x^2+y^2+z^2\right)^2}{3}}=3\)
(áp dụng \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))
Tương tự: \(xy^2+yz^2+zx^2\le3\)
\(\Rightarrow B\ge\frac{3^2}{3+2.3}=1\)
\(VT=A+B\ge1+\frac{1}{4}=\frac{5}{4}=VP\)
Bài 1. Tìm ba số x, y, z, t biết:
\(\text{x : y : z : t 2 : 3: 4 : 5 & x+ y +z+ t =4}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\text{& x -y+ z 49}\)
Cần gấp
x : y : z : t = 2 : 3 : 4 : 5
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{2}{7}\)
\(\Rightarrow x=\frac{2}{7}.2=\frac{4}{7};y=\frac{2}{7}.3=\frac{6}{7};z=\frac{2}{7}.4=\frac{8}{7};t=\frac{2}{7}.5=\frac{10}{7}\)
Ta có: \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{49}{7}=7\)
\(\Rightarrow x=7.10=70;y=7.15=105;z=7.12=84\)
Dù nhầm nhưng cũng thank nha