Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
❄Jewish Hải❄
Xem chi tiết
❄Jewish Hải❄
3 tháng 2 2022 lúc 13:30

mik chỉ cần câu b thôi

hehe

Châu Tuyết My
Xem chi tiết
Cô Hoàng Huyền
11 tháng 4 2018 lúc 17:25

a) Theo tính chất hai tiếp tuyến cắt nhau ta có ngay \(\widehat{PHB}=90^o\)

Lại có D đối xứng với B qua O nên BD là đường kính đường tròn (O)

Vậy thì \(\widehat{BCD}=90^o\Rightarrow\widehat{PCB}=90^o\)

Xét tứ giác BHCP có \(\widehat{PCB}=\widehat{PHB}=90^o\) mà C và H là hai đỉnh kề nhau nên BHCP là tứ giác nội tiếp.

b) Do BHCP là tứ giác nội tiếp nên \(\widehat{HCD}=\widehat{PBH}\)  (Góc ngoài tại một đỉnh bằng góc trong đỉnh đối diện với nó)

Lại có \(\widehat{ACD}=\widehat{ABD}\)   (Hai góc nội tiếp cùng chắn cung AD)

\(\Rightarrow\widehat{ACH}=\widehat{ACD}+\widehat{DCH}=\widehat{ABD}+\widehat{PBH}=\widehat{PBD}=90^o\)

Vậy nên AC vuông góc CH.

c) Tứ giác CHMA nội tiếp nên \(\widehat{CAH}=\widehat{CMH}\)   (Hai góc nội tiếp cùng chắn cung CH)

Lại có \(\widehat{CAH}=\widehat{CAB}=\widehat{CIB}\)   (Hai góc nội tiếp cùng chắn cung CB)

Vậy nên \(\widehat{CMH}=\widehat{CIB}\)

Chúng lại ở vị trí đồng vị nên HM // Bi

Xét tam giác ABQ có H là trung điểm AB, HM // BI nên HM là đường trung bình tam giác ABQ.

Suy ra M là trung điểm AQ.

Hoàng Phú Huy
13 tháng 4 2018 lúc 21:13

a) Theo tính chất hai tiếp tuyến cắt nhau ta có ngay  = 90 o Lại có D đối xứng với B qua O nên BD là đường kính đường tròn (O) Vậy thì  = 90 o⇒ = 90 o Xét tứ giác BHCP có  = = 90 o  mà C và H là hai đỉnh kề nhau nên BHCP là tứ giác nội tiếp. b) Do BHCP là tứ giác nội tiếp nên  =   (Góc ngoài tại một đỉnh bằng góc trong đỉnh đối diện với nó) Lại có  =    (Hai góc nội tiếp cùng chắn cung AD) ⇒ = + = + = = 90 o Vậy nên AC vuông góc CH. c) Tứ giác CHMA nội tiếp nên  =    (Hai góc nội tiếp cùng chắn cung CH) Lại có  = =    (Hai góc nội tiếp cùng chắn cung CB) 

TAKASA
17 tháng 8 2018 lúc 21:35

Bài giải : 

a) Theo tính chất hai tiếp tuyến cắt nhau ta có ngay ^PHB=90o

Lại có D đối xứng với B qua O nên BD là đường kính đường tròn (O)

Vậy thì ^BCD=90o⇒^PCB=90o

Xét tứ giác BHCP có ^PCB=^PHB=90o mà C và H là hai đỉnh kề nhau nên BHCP là tứ giác nội tiếp.

b) Do BHCP là tứ giác nội tiếp nên ^HCD=^PBH  (Góc ngoài tại một đỉnh bằng góc trong đỉnh đối diện với nó)

Lại có ^ACD=^ABD   (Hai góc nội tiếp cùng chắn cung AD)

⇒^ACH=^ACD+^DCH=^ABD+^PBH=^PBD=90o

Vậy nên AC vuông góc CH.

c) Tứ giác CHMA nội tiếp nên ^CAH=^CMH   (Hai góc nội tiếp cùng chắn cung CH)

Lại có ^CAH=^CAB=^CIB   (Hai góc nội tiếp cùng chắn cung CB)

Vậy nên ^CMH=^CIB

Chúng lại ở vị trí đồng vị nên HM // Bi

Xét tam giác ABQ có H là trung điểm AB, HM // BI nên HM là đường trung bình tam giác ABQ.

Suy ra M là trung điểm AQ.

Nguyễn Quốc Huy
Xem chi tiết
camcon
22 tháng 1 2022 lúc 17:19

Đường tròn ngoại tiếp tam giác ACH cắt IC tại M. Tia AM cắt IB tại Q. CM: M là trung điểm AQ

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 6 2018 lúc 5:36

Đề kiểm tra Toán 9 | Đề thi Toán 9

d) Ta có:

K là trung điểm của CE (E đối xứng với C qua AB)

K là trung điểm của AB

AB ⊥ CE (MO ⊥ AB)

⇒ Tứ giác AEBC là hình thoi

⇒ BE // AC

Mà AC ⊥ AD (A thuộc đường tròn đường kính CD)

Nên BE ⊥ AD và DK ⊥ AB

Vậy E là trực tâm của tam giác ADB

Ngọc Anh
Xem chi tiết
Ngọc Anh
Xem chi tiết
Lê Thị Ngọc Bích
11 tháng 5 2023 lúc 13:18

Để chứng minh HM.KN=HN.KM, ta sẽ sử dụng định lí Ptolemy cho tứ giác HMIN và KMNO.

Ta có:

Tứ giác HMIN là tứ giác nội tiếp do hai tiếp tuyến IM và IN của đường tròn (O).
Tứ giác KMNO là tứ giác điều hòa do K là điểm đối xứng của M qua O.
Áp dụng định lí Ptolemy cho tứ giác HMIN, ta được:
HM.IN + HN.IM = HI.MN

Áp dụng định lí Ptolemy cho tứ giác KMNO, ta được:
KM.NO + KO.MN = KN.MO

Vì K là điểm đối xứng của M qua O nên KO=OM. Thay vào biểu thức trên, ta được:
KM.NO + OM.MN = KN.MO
KM.NO + MN² = KN.MO

Nhân cả hai vế của phương trình trên với IM.IN, ta được:
KM.NO.IM.IN + MN².IM.IN = KN.MO.IM.IN
HM.KN + MN².IM.IN = HN.KM.IM.IN

Từ đó suy ra:
HM.KN = HN.KM + MN²/IM.IN

Nhưng IM và IN lần lượt là đường cao của tam giác HIM và tam giác HIN nên:
IM.IN = HM.HN

Thay vào biểu thức trên, ta được:
HM.KN = HN.KM + MN²/HM.HN

Ta thấy rằng tam giác HIM và tam giác HIN đồng dạng nên:
HM/HN = IM/IN

Thay vào biểu thức trên, ta được:
HM.KN = HN.KM + MN².IM²/IN²

Vì tam giác HIM và tam giác HIN đồng dạng nên:
IM/IN = HM/HN

Thay vào biểu thức trên, ta được:
HM.KN = HN.KM + MN².HM²/HN²

Điều này chứng tỏ HM.KN=HN.KM nên ta đã chứng minh được điều phải chứng minh.

Ngọc Anh
Xem chi tiết
Ngọc Anh
Xem chi tiết
TRAI HỌ CHU (PÉ LEO 2K5)...
Xem chi tiết