Cho đường tròn (O) và một điểm I nằm ngoài đường tròn. Qua I kẻ hai tiếp tuyến IM và IN với đường tròn (O). Gọi K là điểm đối xứng với M qua O. Đường thẳng IK cắt đường tròn (O) tại H.
chứng minh HM.KN=HN.KM
Cho đường tròn (O) và một điểm I nằm ngoài đường tròn. Qua I kẻ hai tiếp tuyến IM và IN với đường tròn (O). Gọi K là điểm đối xứng với M qua O. Đường thẳng IK cắt đường tròn (O) tại H.
chứng minh HM.KN=HN.KM
Cho đường tròn (O) và một điểm I nằm ngoài đường tròn. Qua I kẻ hai tiếp tuyến IM và IN với đường tròn (O). Gọi K là điểm đối xứng với M qua O. Đường thẳng IK cắt đường tròn (O) tại H.
chứng minh HM.KN=HN.KM
Cho đường tròn (O) và một điểm I nằm ngoài đường tròn. Qua I kẻ hai tiếp tuyến IM và IN với đường tròn (O). Gọi K là điểm đối xứng với M qua O. Đường thẳng IK cắt đường tròn (O) tại H.
a) Chứng minh tứ giác IMON nội tiếp.
b) Chứng minh tam giác INH đồng dạng tam giác IKN và IN^2=IH.IK
c) chứng minh HM.KN=HN.KM
giúp mình ý b,c
Cho đường tròn (O) và một điểm I nằm ngoài đường tròn. Qua I kẻ hai tiếp tuyến IM và IN với đường tròn (O). Gọi K là điểm đối xứng với M qua O. Đường thẳng IK cắt đường tròn (O) tại H.
a) Chứng minh tứ giác IMON nội tiếp.
b) Chứng minh tam giác INH đồng dạng tam giác IKN và IN^2=IH.IK
c) chứng minh HM.KN=HN.KM
giúp mình ý b,c
cho một điểm P nằm ngoài đường tròn (O). Qua P kẻ cát tuyến PMN với đường tròn. Các tiếp tuyến tại M và N cắt nhau tại Q. Qua Q kẻ đường thẳng vuông góc với OP , cắt OP tại E và cắt đường tròn (O) tại I và K (I nằm giữa Q và K). Gọi F là giao điểm của OQ và MN. Chứng minh 5 điểm P,I,F,O,K cùng nằm trên một đường tròn
Cho đường tròn (O;R) và điểm M ở ngoài đường tròn sao cho OM=8/5 R . Kẻ các tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm), đường thẳng AB cắt OM tại K.
d) Đường thẳng MO cắt đường tròn (O) tại C và D (C nằm giữa O và M). Gọi E là điểm đối xứng của C qua K. Chứng minh E là trực tâm của tam giác ABD.
Cho đường tròn (O) và một điểm I nằm ngoài đường tròn. Qua I kẻ haitiếp tuyến IM và IN với đường tròn (O),H là giao điểm của OI và MN.a)Chứng minh 4 điểm I, M, O, N cùng thuộc một đường tròn.b)Chứng minhOIMN⊥và 2.OH OIR=.c)Kẻđường kính MK, tia IK cắt đường tròn tại E. Chứng minh 2.IMIE IK=và 𝐼𝑂𝐾̂=𝐼𝐸𝐻̂
Câu 4: (3,0 điểm). Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại hai điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H. a/ Tính OH. OM theo R. b/ Chứng minh: Bốn điểm M, A, I , O cùng thuộc một đường tròn. c/ Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R)