Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đức huỳnh 123
Xem chi tiết
Nam Dương Lê
Xem chi tiết
Nguyễn Phương Uyên
18 tháng 9 2019 lúc 18:25

A B C E F H I

E;F lần lượt là tủng điểm của AB; AC (gt)

=> EF là đường trung bình của tam giác ABC (đn)

=> EF = 1/2BC (đl)

=> BC = EF.2

mà EF = 5 cm (gT)

=> BC = 5.2 = 10 (cm)

b, có E là trung điểm của AB (gt) => AE = 1/2AB (đn)    (1)

=> HE là trung tuyến của tam giác vuông AHB (đn) 

=> HE = 1/2 AB (đl)    (2)

(1)(2) => AE = HE 

=> E thuộc đường trung trực của AH (Đl)     (3)

làm tương tự với F trong tam giác AHC 

=> F thuộc đường trung trực của AH (Đl)    (4)

(3)(4) => EF là đường trung trực của AH (đl)

Hạ
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 1 2022 lúc 20:34

Ta có: ΔAHB vuông tại H 

mà HD là đường trung tuyến

nên HD=AB/2(1)

Xét ΔABC có

F là trung điểm của AC

E là trung điểm của BC

Do đó: FE là đường trung bình

=>FE=AB/2(2)

Từ (1), (2) suy ra DH=EF

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 9 2019 lúc 8:45

Xét tam giác ABC có D, E lần lượt là trung điểm của AB, AC

⇒ DE là đường trung bình của tam giác ABC

Hay DE//BC và DE = 1/2BC ⇒ BC = 2DE = 2.4 = 8( cm )

Khi đó ta có: S = 1/2AH.BC = 1/2.6.8 = 24  c m 2

Chọn đáp án A.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 10 2017 lúc 4:05

Xét tam giác ABC có D, E lần lượt là trung điểm của AB, AC

⇒ DE là đương trung bình của tam giác ABC

Hay DE//BC và DE = 1/2BC ⇒ BC = 2DE = 2.4 = 8( cm )

Khi đó ta có: S = 1/2AH.BC = 1/2.6.8 = 24  c m 2

Chọn đáp án A.

lê thùy linh
Xem chi tiết
Xem chi tiết
Lê Trần Ngọc Hằng
22 tháng 6 2020 lúc 13:12

tự kẻ hình nha:333

a) vì AB là trung trực của DM=> MH=HD( đặt H là giao điểm của AB và DM)

xét tam giác MAB và tam giác  DAB có

MH=HD(cmt)

AHM=AHD(=90 độ)

AH chung

=> tam giác MAB= tam giác DAB(cgc)

=> AM=AD( hai cạnh tương ứng)

vì AC là trung trực của DN=> NK=DK( đặt K là giao điểm của AC và DN)

xét tam giác AKD và tam giác AKN có

DK=NK(cmt)

AKD=AKN(=90 độ)

AK chung

=> tam giác AKD= tam giác AKN( cgc)

=> AN=AD ( hai cạnh tương ứng)

AM=AD(cmt)

=> AM=AN=> tam giác AMN cân A

b) vì E thuộc đường trung trực AB=> EM=ED

vì F thuộc đường trung trực AC=> FD=FN

ta có MN=ME+EF+FN mà EM=ED, FD=FN

=> MN= ED+EF+FD

c) xét tam giác ADF và tam giác ANF có

FD=FN(cmt)

AD=AN(cmt)

AF chung

=> tam giác ADF= tam giác ANF(ccc)

=> ANF=ADF( hai góc tương ứng)

xét tam giác AME và tam giác ADE có

AM=AD(cmt)

AE chung

EM=ED(cmt)

=> tam giác AME= tam giác ADE(ccc)

=> AME=ADE( hai góc tương ứng)

mà AME=ANF( tam giác AMN cân A)

=> ADE=ADF=> AD là p/g của EDF

d) chưa nghĩ đc :)))))))

Khách vãng lai đã xóa
Trần Văn Hoàng
12 tháng 5 2021 lúc 20:06

CHUẨN R BN ƠI HỌC THÌ NGU MÀ CHƠI NGU THÌ GIỎI 

Khách vãng lai đã xóa
Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2020 lúc 22:19

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay \(BC=\sqrt{100}=10cm\)

Xét ΔABC có AH là đường cao ứng với cạnh BC nên 

\(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)

Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay \(AH=\dfrac{48}{10}=4.8cm\)

Vậy: AH=4,8cm

b) Xét tứ giác AEHF có 

\(\widehat{EAF}=90^0\)(ΔABC vuông tại A, E∈AB, F∈AC)

\(\widehat{AEH}=90^0\)(HE⊥AB)

\(\widehat{AFH}=90^0\)(HF⊥AC)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

⇒AH=EF(Hai đường chéo của hình chữ nhật AEHF)

mà AH=4,8cm(cmt)

nên EF=4,8cm

Vậy: EF=4,8cm

 

Abcdef72
Xem chi tiết