Cho tam giác ABC có E,F lần lượt là trung điểm của AB, AC và EF=4cm.Biết đường cao cuẩh=6cm.Diện tích của tam giác ABC là?
Cho tam giác ABC có E,F lần lượt là trung điểm của AB và AC và EF=4cm.Biết đường cao của AH =6cm.Diện tích của tam giác ABC là ?
Cho tam giác ABC(AB<AC)có E,F lần lượt là trung điểm AB,AC.
a) Tính BC biết EF=5cm
b)Vẽ AH là đường cao của tam giác ABC,AH cắt EF tại I.C/M EF là đường trung trực của AH
E;F lần lượt là tủng điểm của AB; AC (gt)
=> EF là đường trung bình của tam giác ABC (đn)
=> EF = 1/2BC (đl)
=> BC = EF.2
mà EF = 5 cm (gT)
=> BC = 5.2 = 10 (cm)
b, có E là trung điểm của AB (gt) => AE = 1/2AB (đn) (1)
=> HE là trung tuyến của tam giác vuông AHB (đn)
=> HE = 1/2 AB (đl) (2)
(1)(2) => AE = HE
=> E thuộc đường trung trực của AH (Đl) (3)
làm tương tự với F trong tam giác AHC
=> F thuộc đường trung trực của AH (Đl) (4)
(3)(4) => EF là đường trung trực của AH (đl)
Cho tam giác ABC (AB < AC < BC), đường cao AH. Gọi D, E, F lần lượt là trung điểm của AB, BC và AC. Chứng minh DH =EF.
Ta có: ΔAHB vuông tại H
mà HD là đường trung tuyến
nên HD=AB/2(1)
Xét ΔABC có
F là trung điểm của AC
E là trung điểm của BC
Do đó: FE là đường trung bình
=>FE=AB/2(2)
Từ (1), (2) suy ra DH=EF
Cho tam giác ABC có D, E lần lượt là trung điểm của AB, AC và DE = 4cm. Biết đường cao AH = 6cm. Diện tích của tam giác ABC là?
A. S = 24 c m 2
B. S = 16 c m 2
C. S = 48 c m 2
D. S = 32 c m 2
Xét tam giác ABC có D, E lần lượt là trung điểm của AB, AC
⇒ DE là đường trung bình của tam giác ABC
Hay DE//BC và DE = 1/2BC ⇒ BC = 2DE = 2.4 = 8( cm )
Khi đó ta có: S = 1/2AH.BC = 1/2.6.8 = 24 c m 2
Chọn đáp án A.
Cho tam giác ABC có D, E lần lượt là trung điểm của AB, AC và DE = 4cm. Biết đường cao AH = 6cm. Diện tích của tam giác ABC là?
A. S = 24 c m 2
B. S = 16 c m 2
C. S = 48 c m 2
D. S = 32 c m 2
Xét tam giác ABC có D, E lần lượt là trung điểm của AB, AC
⇒ DE là đương trung bình của tam giác ABC
Hay DE//BC và DE = 1/2BC ⇒ BC = 2DE = 2.4 = 8( cm )
Khi đó ta có: S = 1/2AH.BC = 1/2.6.8 = 24 c m 2
Chọn đáp án A.
Cho tam giác nhọn ABC, AD là đường cao. Vẽ các điểm M, N sao cho AB là trung trực của DM, AC là trung trực của DN. Gọi E, F lần lượt là giao điểm của MN với AC, AB. CMR: a) Tam giác AMN cân b) DE+EF+DF=MN c) DA là phân giác góc EDF d) Giao điểm các đường phân giác của tam giác DEF và trực tâm tam giác ABC trùng nhau
tự kẻ hình nha:333
a) vì AB là trung trực của DM=> MH=HD( đặt H là giao điểm của AB và DM)
xét tam giác MAB và tam giác DAB có
MH=HD(cmt)
AHM=AHD(=90 độ)
AH chung
=> tam giác MAB= tam giác DAB(cgc)
=> AM=AD( hai cạnh tương ứng)
vì AC là trung trực của DN=> NK=DK( đặt K là giao điểm của AC và DN)
xét tam giác AKD và tam giác AKN có
DK=NK(cmt)
AKD=AKN(=90 độ)
AK chung
=> tam giác AKD= tam giác AKN( cgc)
=> AN=AD ( hai cạnh tương ứng)
AM=AD(cmt)
=> AM=AN=> tam giác AMN cân A
b) vì E thuộc đường trung trực AB=> EM=ED
vì F thuộc đường trung trực AC=> FD=FN
ta có MN=ME+EF+FN mà EM=ED, FD=FN
=> MN= ED+EF+FD
c) xét tam giác ADF và tam giác ANF có
FD=FN(cmt)
AD=AN(cmt)
AF chung
=> tam giác ADF= tam giác ANF(ccc)
=> ANF=ADF( hai góc tương ứng)
xét tam giác AME và tam giác ADE có
AM=AD(cmt)
AE chung
EM=ED(cmt)
=> tam giác AME= tam giác ADE(ccc)
=> AME=ADE( hai góc tương ứng)
mà AME=ANF( tam giác AMN cân A)
=> ADE=ADF=> AD là p/g của EDF
d) chưa nghĩ đc :)))))))
CHUẨN R BN ƠI HỌC THÌ NGU MÀ CHƠI NGU THÌ GIỎI
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm.
a) Tính đường cao AH.
b) Kẻ HE⊥AB, HF⊥AC (E∈AB, F∈AC). Tính EF.
c) Gọi M,N lần lượt là trung điểm của HB và HC. Tứ giác MNFE là hình gì? Vì sao? Tính diện tích tứ giác đó.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay \(BC=\sqrt{100}=10cm\)
Xét ΔABC có AH là đường cao ứng với cạnh BC nên
\(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)
Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay \(AH=\dfrac{48}{10}=4.8cm\)
Vậy: AH=4,8cm
b) Xét tứ giác AEHF có
\(\widehat{EAF}=90^0\)(ΔABC vuông tại A, E∈AB, F∈AC)
\(\widehat{AEH}=90^0\)(HE⊥AB)
\(\widehat{AFH}=90^0\)(HF⊥AC)
Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
⇒AH=EF(Hai đường chéo của hình chữ nhật AEHF)
mà AH=4,8cm(cmt)
nên EF=4,8cm
Vậy: EF=4,8cm
Cho tam giác ABC có AH là đường cao. Gọi E và F lần lượt là trung điểm của AB và AC. đoạn thẳng AHI. điểm của a)Biết BC = 6 cm, Tỉnh độ dài EF. b)Đoạn thẳng EF cắt AH tại I. Chứng minh: I là trung điểm AH