Chứng minh rằng 1/20*23+1/23*26+1/26*29+...+1/77*80<1/79
Chứng minh rằng: 1/20*23+1/23*26+1/26*29+....+1/77*80 <1/79
\(\frac{1}{20\cdot23}+\frac{1}{23\cdot26}+\frac{1}{26\cdot29}+...+\frac{1}{77\cdot80}\)
\(< \frac{1}{3}\left[\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+\frac{3}{26\cdot29}+...+\frac{3}{77\cdot80}\right]\)
\(< \frac{1}{3}\left[\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right]\)
\(< \frac{1}{3}\left[\frac{1}{20}-\frac{1}{80}\right]\)
\(< \frac{1}{3}\left[\frac{4}{80}-\frac{1}{80}\right]\)
\(< \frac{1}{3}\cdot\frac{3}{80}=\frac{1}{80}< \frac{1}{79}(đpcm)\)
chứng tỏ rằng 1/20*23+1/23*26+1/26*29.........+1/77*80<1/9
Ta có :
\(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\)
\(=\frac{1}{3}\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)
\(=\frac{1}{3}\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=\frac{1}{3}\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\frac{3}{80}\left(\frac{3}{80}< 1\right)\)
\(\Leftrightarrow\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}< \frac{1}{3}\left(đpcm\right)\)
\(M=\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77x80}\)
\(M=\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\)
\(M=\frac{1}{20}-\frac{1}{80}=\frac{3}{80}\)
\(\frac{3}{80}=\frac{3x9}{80x9}=\frac{27}{720};\frac{1}{9}=\frac{1x80}{9x80}=\frac{80}{720}\)
Vì \(\frac{27}{720}< \frac{80}{720}\Rightarrow\frac{3}{80}< \frac{1}{9}\Rightarrow M< \frac{1}{9}\)
#~Will~be~Pens~#
Hoàng Nguyên Hiếu:Sai rồi nha bạn
\(\frac{1}{20.23}=\frac{1}{20}-\frac{1}{23}\Leftrightarrow23-20=1\)
-.-
Chứng minh rằng:
S2= 32 phần 20*23 + 32 phần 23*26 + 32 phần 2*29 + . . . + 32 phần 77*80 < 1 phần 8
chứng minh rằng: 32/20*23+32/23*26+...+32/77*80<1
(*: là dấu nhân )
B =3mu 2/20*23 +3mu 2/23*26 +....+3mu2/ 77*80
3 mũ 2 phần 20*23+3 mũ 2 phần 23*26+3 mũ 2 phần 26*29 +...+3 mũ 2 phần 77*80
tính nhanh nha
\(\dfrac{3^2}{20.23}+\dfrac{3^2}{23.26}+\dfrac{3^2}{26.29}+...+\dfrac{3^2}{77.80}\)
\(=3\left(\dfrac{3}{20.23}+\dfrac{3}{23.26}+\dfrac{3}{26.29}+...+\dfrac{3}{77.80}\right)\)
\(=3\left(\dfrac{1}{20}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{29}+...+\dfrac{1}{77}-\dfrac{1}{80}\right)\)
\(=3\left(\dfrac{1}{20}-\dfrac{1}{80}\right)\)
\(=3\left(\dfrac{4}{80}-\dfrac{1}{80}\right)=3.\dfrac{3}{80}=\dfrac{9}{80}\)
Chứng minh rằng:
32/20×23+32/23×36+.....+32/77×80<1
Xin hãy giúp tôi
Ta có : \(\frac{3^2}{20\cdot23}+\frac{3^2}{23\cdot26}+...+\frac{3^2}{77\cdot80}=\frac{1}{3}\cdot\left(\frac{1}{20}-\frac{1}{80}\right)=\frac{1}{3}\cdot\frac{3}{80}=\frac{1}{80}< 1\) ( đpcm )
HELP !
B=5/20*23+5/23*26+...+5/77*78 cmr B<1/2
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
chứng minh rằng : \(\frac{1}{20\cdot23}\)+\(\frac{1}{23\cdot26}\)+\(\frac{1}{26\cdot29}\)+...+\(\frac{1}{77\cdot80}\)<\(\frac{1}{9}\)
giúp mình với mai mình thi rồi
#)Giải:
Đặt \(A=\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\)
\(A=\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\)
\(A=\frac{1}{20}-\frac{1}{80}\)
\(A=\frac{3}{80}< \frac{1}{9}\)
\(\Leftrightarrow A< \frac{1}{9}\)
#~Will~be~Pens~#
\(\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-...-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\frac{3}{80}\)
\(=\frac{3}{240}=\frac{1}{80}\)
Vì \(\frac{1}{80}< \frac{1}{9}\)
Nên \(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}< \frac{1}{9}\)
Đặt \(A=\frac{1}{20\cdot23}+\frac{1}{23\cdot26}+\frac{1}{26\cdot29}+...+\frac{1}{77\cdot80}\)
\(\frac{A}{3}=\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+\frac{3}{26\cdot29}+...+\frac{3}{77\cdot80}\)
\(\frac{A}{3}=\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\)
\(\frac{A}{3}=\frac{1}{20}-\frac{1}{80}\)
\(\frac{A}{3}=\frac{3}{80}\)
\(A=\frac{3}{80}:3=\frac{3}{240}=\frac{1}{80}\)
\(\Rightarrow A=\frac{1}{80}< \frac{9}{720}< \frac{80}{720}=\frac{1}{9}\)
Vậy A < 1/9