Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiến Hoàng Minh
Xem chi tiết
Nguyễn Trọng Đạt
7 tháng 10 2021 lúc 21:10

Xét hình thang ABCD có:

AE = DE

BF = CF

=> EF là đường trung bình của hình thang ABCD

=> EF// AB và DC (1)

Mà : K ∈ EF (2)

Từ (1), (2) => EK // DC

Xét tam giác ADC có

AE = DE

EK// DC

=> AK = CK

Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 21:17

Xét hình thang ABCD có 

E là trung điểm của AD

F là trung điểm của BC

Do đó: EF là đường trung bình của hình thang ABCD

Suy ra: \(FE=\dfrac{AB+CD}{2}\)

Phan An
Xem chi tiết
Minh Hiếu
7 tháng 10 2021 lúc 21:29

Tham khảo đây nha:

https://hoidap247.com/cau-hoi/1107494

Phan An
Xem chi tiết
Tiến Hoàng Minh
Xem chi tiết
Lê Thị Minh Thư
Xem chi tiết
Nguyễn Ngọc Nguyên Anh
Xem chi tiết
nguyen van giao
Xem chi tiết
Nguyễn Linh Chi
30 tháng 7 2019 lúc 14:23

Câu hỏi của headsot96 - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo!

Cu Giai
Xem chi tiết
Hiền Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 12 2020 lúc 17:50

a) Ta có: AB//CD(gt)

mà E∈AB và F∈CD

nên AE//DF và EB//FC

Xét tứ giác AEFD có AE//DF(cmt)

nên AEFD là hình thang có hai đáy là AE và DF(Định nghĩa hình thang)

Hình thang AEFD(AE//DF) có 

O là trung điểm của EF(gt)

OM//AE//DF(MN//AB//DC, E∈AB, O∈MN, F∈DC)

Do đó: M là trung điểm của AD(Định lí 3 về đường trung bình của hình thang)

Xét tứ giác BEFC có BE//FC(cmt)

nên BEFC là hình thang có hai đáy là BE và FC(Định nghĩa hình thang)

Hình thang BEFC(BE//FC) có 

O là trung điểm của EF(gt)

ON//EB//FC(MN//AB//DC, E∈AB, O∈MN, F∈CD)

Do đó: N là trung điểm của BC(Định lí 3 về đường trung bình của hình thang)

Xét ΔABD có 

M là trung điểm của AD(cmt)

E là trung điểm của AB(gt)

Do đó: ME là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

⇒ME//BD và \(ME=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔBDC có 

N là trung điểm của BC(cmt)

F là trung điểm của CD(gt)

Do đó: NF là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)

⇒NF//BD và \(NF=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra ME//NF và ME=NF

Xét tứ giác EMFN có ME//NF(cmt) và ME=NF(cmt)

nên EMFN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét ΔBAC có 

E là trung điểm của AB(gt)

N là trung điểm của BC(cmt)

Do đó: EN là đường trung bình của ΔBAC(Định nghĩa đường trung bình của tam giác)

⇒EN//AC và \(EN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)

Hình bình hành EMFN trở thành hình thoi khi EM=EN

mà \(EM=\dfrac{BD}{2}\)(cmt) và \(EN=\dfrac{AC}{2}\)(cmt)

nên BD=AC

Vậy: Khi hình thang ABCD có thêm điều kiện BD=AC thì EMFN là hình thoi