Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phạm ngọc anh
Xem chi tiết
Phùng Thị Vân Anh
Xem chi tiết
Akai Haruma
28 tháng 7 2024 lúc 18:29

Lời giải:

$6x+y=5$

$\Rightarrow y=5-6x$

Khi đó: $A=|x+1|+|y-2|=|x+1|+|5-6x-2|=|x+1|+|3-6x|$

Nếu $x<-1$ thì:

$A=-x-1+3-6x=2-7x> 2-7(-1)=9$

Nếu $\frac{1}{2}\geq x\geq -1$ thì:

$A=x+1+3-6x=4-5x\geq 4-5.\frac{1}{2}=\frac{3}{2}$

Nếu $x> \frac{1}{2}$ thì:

$A=x+1+6x-3=7x-2> 7.\frac{1}{2}-2=\frac{3}{2}$

Từ 3 TH trên suy ra $A_{\min}=\frac{3}{2}$ khi $x=\frac{1}{2}$

Đỗ Hoàng Đăng Duy
Xem chi tiết
Nguyễn Hà Linh
4 tháng 7 2015 lúc 15:29

Vì | x - 2001| > hoặc = 2001 - x

    | x - 1| > hoặc = x - 1

Nên A = |x - 2001| + | x - 1| > hoặc =  2001 - x + x - 1 = 2000

=> A > hoặc = 2002

=> Để A có giá trị nhỏ nhất <=> A = 2002

Khi đó 2001 - x > hoặc = 0 nên x < hoặc = 2001    (1)

          x - 1 > hoặc = 0 nên x > hoặc = 1               (2)

Từ (1) và (2) => 1 < hoặc = x < hoặc = 2001

Vậy A có GTNN là 2000 <=>  1 < hoặc = x < hoặc = 2001

Ngô Anh Quân
4 tháng 5 2016 lúc 21:33

ta có A=

Bùi Vương TP (Hacker Nin...
18 tháng 8 2018 lúc 18:27

Vì | x - 2001| > hoặc = 2001 - x

    | x - 1| > hoặc = x - 1

Nên A = |x - 2001| + | x - 1| > hoặc = 2001 - x + x - 1 = 2000

=> A > hoặc = 2002

=> Để A có giá trị nhỏ nhất <=> A = 2002

Khi đó 2001 - x > hoặc = 0 nên x < hoặc = 2001 (1)

          x - 1 > hoặc = 0 nên x > hoặc = 1 (2)

Từ (1) và (2) => 1 < hoặc = x < hoặc = 2001

Vậy A có GTNN là 2000 <=> 1 < hoặc = x < hoặc = 2001

Le Ngân Giang
Xem chi tiết
Kings
Xem chi tiết
Pham Quy Ngoc
Xem chi tiết
bui huong mo
Xem chi tiết
Nguyễn Thiên Phúc
23 tháng 5 2021 lúc 15:51

2450 nhé

Khách vãng lai đã xóa
Nguyễn Gia Bảo
23 tháng 5 2021 lúc 15:55

còn cái nịtッ

Khách vãng lai đã xóa
bui huong mo
23 tháng 5 2021 lúc 15:57

bạn nói cách giải hộ mk với

Khách vãng lai đã xóa
Elizabeth
Xem chi tiết
Lightning Farron
9 tháng 11 2016 lúc 17:37

Bài 1:

\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)

\(\ge x-3+0+7-x=4\)

Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)

Vậy MinA=4 khi x=5

Bài 2:

\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)

\(\ge x-1+x-2+3-x+5-x=5\)

Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)

 

Dương Đình Hưởng
Xem chi tiết
Nguyen quang hien
15 tháng 4 2018 lúc 20:43

Vì |x-y|\(\ge\)0 với mọi x,y

|x+1|\(\ge\)0 Với mọi x

\(\Rightarrow\)|x-y|+|x+1|\(\ge\)0 Với mọi x,y

\(\Rightarrow\)|x-y|+|x+1|+2016\(\ge\)2016 với mọi x,y

\(\Rightarrow\)A\(\ge\)2016 với mọi x,y

Dấu '=' xảy ra\(\Leftrightarrow\)\(\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-y=0\\x=0-1=-1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}-1-y=0\\x=-1\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}y=-1-0=-1\\x=-1\end{cases}}\)

Vậy Min A=2016\(\Leftrightarrow\)x=-1,y=-1