Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
CP Enderboy
Xem chi tiết
Jeong Soo In
17 tháng 2 2020 lúc 17:53

Giải:

Ta có:

\(\frac{x+1}{15}+\frac{x+2}{7}+\frac{x+4}{4}+6=0\)

\(\Leftrightarrow\frac{x}{15}+\frac{1}{15}+\frac{x}{7}+\frac{2}{7}+\frac{x}{4}+\frac{4}{4}+6=0\)

\(\Leftrightarrow\frac{x}{15}+\frac{x}{7}+\frac{x}{4}=-\frac{772}{105}\)

\(\Leftrightarrow x\left(\frac{1}{15}+\frac{1}{7}+\frac{1}{4}\right)=-\frac{772}{105}\)

\(\Leftrightarrow x=-16\)

Vậy phương trình trên có nghiệm là x = -16.

b. Cách làm tương tự.

Chúc bạn học tốt@@

Khách vãng lai đã xóa
Vũ Phương Anh
Xem chi tiết

\(a)5-\left(x-6\right)=4\left(3-2x\right)\)

\(\Leftrightarrow5-x+6=12-8x\)

\(\Leftrightarrow-x+8x=12-5-6\)

\(\Leftrightarrow7x=1\Leftrightarrow x=\frac{1}{7}\)

Hoàng Băng Nhi
6 tháng 2 2019 lúc 21:03

a) 5-(x-6)=4(3-2x)

<=>5-x-6=12-8x

<=>-x+8x=2-5-6

<=>7x=1

<=>x=1/7

\(b)3-4x\left(25-2x\right)=8x^2+x-300\)

\(\Leftrightarrow3-100x+8x^2=8x^2+x-300\)

\(\Leftrightarrow101x-303=0\)

\(\Leftrightarrow101\left(x-3\right)=0\)

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Lê Phan Anh Thư
Xem chi tiết
Mạnh Lê
23 tháng 5 2018 lúc 10:57

Với mọi n nguyên dương ta có:

\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=1\Rightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\)

Với k nguyên dương thì 

\(\frac{1}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k+1}+\sqrt{k}}\Rightarrow\frac{2}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k-1}+\sqrt{k}}+\frac{1}{\sqrt{k+1}+\sqrt{k}}=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}\)

\(=\sqrt{k+1}-\sqrt{k-1}\)(*)

Đặt A = vế trái. Áp dụng (*) ta có:

\(\frac{2}{\sqrt{1}+\sqrt{2}}>\sqrt{3}-\sqrt{1}\)

\(\frac{2}{\sqrt{3}+\sqrt{4}}>\sqrt{5}-\sqrt{3}\)

...

\(\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-\sqrt{79}\)

Cộng tất cả lại

\(2A=\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+....+\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-1=8\Rightarrow A>4\left(đpcm\right)\)

3. 

Theo bất đẳng thức cô si ta có: 

\(\sqrt{b-1}=\sqrt{1.\left(b-1\right)}\le\frac{1+b-1}{2}=\frac{b}{2}\Rightarrow a.\sqrt{b-1}\le\frac{a.b}{2}\)

Tương tự \(\Rightarrow b.\sqrt{a-1}\le\frac{a.b}{2}\Rightarrow a.\sqrt{b-1}+b.\sqrt{a-1}\le a.b\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=2\)

Hoàng Bảo Trân
Xem chi tiết
Pham Van Hung
3 tháng 9 2018 lúc 14:50

     \(\frac{149-x}{25}+\frac{170-x}{23}+\frac{187-x}{21}+\frac{200-x}{19}=10\)

\(\Rightarrow\frac{149-x}{25}-1+\frac{170-x}{23}-2+\frac{187-x}{21}-3+\frac{200-x}{19}-4=0\)

\(\Rightarrow\frac{124-x}{25}+\frac{124-x}{23}+\frac{124-x}{21}+\frac{124-x}{19}=0\)

\(\Rightarrow\left(124-x\right)\left(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)=0\)

Mà \(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}>0\Rightarrow x-124=0\Rightarrow x=124\)

linhcute
Xem chi tiết
Lưu Quý Lân
Xem chi tiết
phạm thị hồng nhung
15 tháng 2 2018 lúc 14:45

\(\Leftrightarrow\frac{9\left(X+9\right)\left(X+9\right)\left(X+10\right)+10\left(X+10\right)\left(X+10\right)\left(X+9\right)}{90\left(X+10\right)\left(X+9\right)}=\frac{9.90\left(X+9\right)+10.90\left(X+10\right)}{90\left(X+10\right)\left(X+9\right)}\)

\(\Rightarrow9\left(X+9\right)^2\left(X+10\right)+10\left(X+10\right)^2\left(X+9\right)=810\left(X+9\right)+900\left(X+10\right)\)

\(\Leftrightarrow\left(9X+90\right)\left(X^2+18X+81\right)+\left(10X+90\right)\left(X^2+20X+100\right)=810X+7290+900X+9000\)

\(\Leftrightarrow\)9X3+162X2+729X+90X2+1620X+7290+10X3+200X2+1000X+90X2+1800X+9000=1710X+16290

\(\Leftrightarrow\)19X3+542X2+5149X+16290=1710X+16290

\(\Leftrightarrow\)19X3+542X2=16290-16290+1710X-5149X

\(\Leftrightarrow\)19X3+542X2=-3439X

\(\Leftrightarrow\)19X3+542X2+3439X=0

RỒI GIẢI TIẾP

Lưu Quý Lân
28 tháng 2 2018 lúc 22:29

nốt đi bạn

Phùng Minh Quân
2 tháng 3 2018 lúc 10:18

Mk nghĩ nên giải theo cách này thì hay hơn ( mk mớp 7 thui nên bài làm mang tính chất tham khảo nhé )

Ta có : 

\(\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)

\(\Leftrightarrow\)\(\left(\frac{x+9}{10}+1\right)+\left(\frac{x+10}{9}+1\right)=\left(\frac{9}{x+10}+1\right)+\left(\frac{10}{x+9}+1\right)\)

\(\Leftrightarrow\)\(\frac{x+19}{10}+\frac{x+19}{9}=\frac{x+19}{x+10}+\frac{x+19}{x+9}\)

\(\Leftrightarrow\)\(\frac{x+19}{10}+\frac{x+19}{9}-\frac{x+19}{x+10}-\frac{x+19}{x+9}=0\)

\(\Leftrightarrow\)\(\left(x+19\right)\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{x+10}-\frac{1}{x+9}\right)=0\)

Xét trường hợp \(x=0\)

\(\Rightarrow\)\(\left(x+19\right)\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{x+10}-\frac{1}{x+9}\right)=\left(x+19\right)\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{10}-\frac{1}{9}\right)=\left(x+19\right).0=0\)

( NHẬN ) 

\(\Rightarrow\) Nếu \(x\ne0\) thì \(\frac{1}{10}+\frac{1}{9}-\frac{1}{x+10}-\frac{1}{x+9}\ne0\)

Xét trường hợp x nguyên dương ta có : 

\(\frac{1}{10}>\frac{1}{x+10}\)

\(\frac{1}{9}>\frac{1}{x+9}\)

\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{9}-\frac{1}{x+10}-\frac{1}{x+9}>0\)

Xét trường hợp x nguyên âm ta có : 

\(\frac{1}{10}< \frac{1}{x+10}\)

\(\frac{1}{9}< \frac{1}{x+9}\)

\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{9}-\frac{1}{x+9}-\frac{1}{x+10}< 0\)

Từ đó suy ra : 

\(x+19=0\)

\(\Rightarrow\)\(x=-19\)

Vậy \(x=0\) hoặc \(x=-19\)

Lưu Quý Lân
Xem chi tiết
Khánh Hạ
28 tháng 2 2018 lúc 20:59

a, \(\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)(1)

ĐKXĐ: \(\hept{\begin{cases}x+9\ne0\\x+10\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-9\\x\ne-10\end{cases}}}\)

(1)\(\Leftrightarrow\frac{9.\left(x+9\right)}{90}+\frac{10.\left(x+10\right)}{90}=\frac{9.\left(x+9\right)}{\left(x+9\right)\left(x+10\right)}+\frac{10.\left(x+10\right)}{\left(x+9\right)\left(x+10\right)}\)

\(\Leftrightarrow9.\left(x+9\right)+10.\left(x+10\right)=9.\left(x+9\right)+10.\left(x+10\right)\)

\(\Leftrightarrow9x+81+10x+100=9x+81+10x+100\)

\(\Leftrightarrow9x+10x-9x-10x=81+100-81-100\)

\(\Leftrightarrow0x=0\)

\(\Rightarrow x\in R\)trừ -9 và -10

Yim Yim
Xem chi tiết
Trà My
28 tháng 9 2017 lúc 16:30

\(\left(\frac{x}{x-1}\right)^2+\left(\frac{x}{x+1}\right)^2=\frac{10}{9}\Leftrightarrow\frac{x^2}{\left(x-1\right)^2}+\frac{x^2}{\left(x+1\right)^2}=\frac{10}{9}\)

\(\Leftrightarrow\frac{x^2\left(x+1\right)^2+x^2\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)^2}=\frac{10}{9}\Leftrightarrow\frac{x^2\left[\left(x+1\right)^2-\left(x-1\right)^2\right]}{\left[\left(x-1\right)\left(x+1\right)\right]^2}=\frac{10}{9}\)

\(\Leftrightarrow\frac{x^2\left(x+1-x+1\right)\left(x+1+x-1\right)}{\left(x^2-1\right)^2}=\frac{10}{9}\Leftrightarrow\frac{x^2.2.2x}{x^4-2x^2+1}=\frac{10}{9}\)

\(\Leftrightarrow36x^3=10x^4-20x^2+10\Leftrightarrow18x^3=5x^4-10x^2+5\Leftrightarrow5x^4-18x^3-10x^2\)+5=0

đến đây tự giải tiếp

Cô Hoàng Huyền
28 tháng 9 2017 lúc 15:49

ĐK:\(x\ne1;x\ne-1\)

\(pt\Leftrightarrow\frac{x^2}{\left(x-1\right)^2}+\frac{x^2}{\left(x+1\right)^2}=\frac{10}{9}\)

\(\Leftrightarrow\frac{9x^2\left(x+1\right)^2+9x^2\left(x-1\right)^2-10\left(x-1\right)^2\left(x+1\right)^2}{9\left(x-1\right)^2\left(x+1\right)^2}=0\)

\(\Leftrightarrow9x^2\left(x+1\right)^2+9x^2\left(x-1\right)^2-10\left(x-1\right)^2\left(x+1\right)^2=0\)

\(\Leftrightarrow9x^4+18x^3+9x^2+9x^4-18x^3+9x^2-10x^4+20x^2-10=0\)

\(\Leftrightarrow8x^4+38x^2-10=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=\frac{1}{4}\\x^2=5\left(l\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

Trà My
28 tháng 9 2017 lúc 16:32

bài sai nguyên tập, mắt lé nhìn + thành -

xin lỗi :((

Nguyễn Bá Hùng
Xem chi tiết
thùy dương
5 tháng 2 2019 lúc 21:14

bn bị rảnh ak ?

ko trả lời thì đừng có viết linh tinh

Dương Lam Hàng
5 tháng 2 2019 lúc 21:15

\(\frac{x+1}{2014}+\frac{x+2}{2013}+\frac{x+3}{2012}+\frac{x+2045}{10}=0\)

\(\Leftrightarrow\frac{x+1}{2014}+1+\frac{x+2}{2013}+1+\frac{x+3}{2012}+1+\frac{x+2045}{10}-3=0\)

\(\Leftrightarrow\frac{x+1+2014}{2014}+\frac{x+2+2013}{2013}+\frac{x+3+2012}{2012}+\frac{x+2045-3.10}{10}=0\)

\(\Leftrightarrow\frac{x+2015}{2014}+\frac{x+2015}{2013}+\frac{x+2015}{2012}+\frac{x+2015}{10}=0\)

\(\Leftrightarrow\left(x+2015\right).\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{10}\right)=0\)

Vì \(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{10}\ne0\)

Nên x + 2015 = 0 <=> x = -2015

Vậy x = -2015