Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Harry James Potter
Xem chi tiết
Uchiha
Xem chi tiết
ftjyt kuikt5ur
Xem chi tiết
Hoàng Lê Bảo Ngọc
21 tháng 5 2016 lúc 15:59

4. 

Xét biểu thức : \(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}=1^2+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+2\left(\frac{k-\left(k-1\right)-1}{k\left(k-1\right)}\right)=1^2+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+2\left(\frac{1}{k-1}-\frac{1}{k}-\frac{1}{k\left(k-1\right)}\right)=\left(1+\frac{1}{\left(k-1\right)}-\frac{1}{k}\right)^2\)

\(\Rightarrow\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}=\left|1+\frac{1}{k-1}-\frac{1}{k}\right|\)

Áp dụng : \(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}=1+\frac{1}{1}-\frac{1}{2}\)

\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=1+\frac{1}{2}-\frac{1}{3}\)

...............................................................

\(\sqrt{1+\frac{1}{2015^2}+\frac{1}{2016^2}}=1+\frac{1}{2015}-\frac{1}{2016}\)

Cộng vế các đẳng thức trên được : \(B=2016-\frac{1}{2016}\)

ftjyt kuikt5ur
19 tháng 5 2016 lúc 18:15

ý thứ 2 là 8/7 chứ không phải 8/8 các bạn nhé. M đánh nhầm chữ

SKT_Rengar Thợ Săn Bóng...
19 tháng 5 2016 lúc 18:36

bài này mk chịu vì mk mới học lớp 5

l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Nguyễn Thu Thủy
Xem chi tiết
Nguyễn trần Ngọc Bích
Xem chi tiết
alibaba nguyễn
21 tháng 4 2017 lúc 10:24

Ta có:

\(\left(y^2+y+1\right)\left(x^2+x+1\right)\)

\(=x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+x+y+1\)

\(=x^2y^2+x^2+y^2+2xy+2=x^2y^2+3\)

Ta lại có:

\(\left(y^2+y+1\right)-\left(x^2+x+1\right)=\left(y^2-x^2\right)+\left(y-x\right)\)

\(=\left(y-x\right)\left(x+y+1\right)=-2\left(x-y\right)\)

Theo đề bài ta có: (sửa đề luôn)

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{\left(y^2+y+1\right)-\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(y^2+y+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=-\frac{2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

Arima Kousei
7 tháng 1 2019 lúc 19:14

Em xin đóng góp cách 2 ạ 

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}\)

\(=\frac{x^4-x-y^4+y}{x^3y^3-y^3-x^3+1}\)

\(=\frac{\left(x^2-y^2\right)\left(x^2+y^2\right)-\left(x-y\right)}{x^3y^3-\left(x^3+y^3\right)+1}\)

\(=\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{x^3y^3-\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x+y\right)^2}\)

\(=\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{x^3y^3-\left(x^2-xy+y^2\right)+x^2+2xy+y^2}\)

\(=\frac{\left(x-y\right)\left[x^2+y^2-\left(x+y\right)^2\right]}{x^3y^3+3xy}\)

\(=\frac{\left(x-y\right).\left(-2\right)xy}{xy\left(x^2y^2+3\right)}\)

\(=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

Do \(\frac{-2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

\(\Rightarrow\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\left(đpcm\right)\)

Con Chim 7 Màu
10 tháng 2 2019 lúc 21:14

\(gt\Rightarrow y-1=-x\Rightarrow x-1=-y\)

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

\(\Leftrightarrow\frac{x^4-x-y^4+y}{\left(y^3-1\right)\left(x^3-1\right)}+\frac{2\left(x-y\right)}{x^2y^2-3}=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)-\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2-3}=0\)

\(\Leftrightarrow\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left(x^2y^2+xy^2+y^2+x^2y+xy+y+x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2-3}=0\)

\(\Leftrightarrow\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+2xy+x^2+y^2+2\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

\(\Leftrightarrow\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+3\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}=\frac{-2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\left(dpcm\right)\)

Dương Thiên Tuệ
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Vũ Tri Hải
30 tháng 5 2017 lúc 22:34

đặt x2 + y2 = a; xy = b. khi đó a - b = 1 hay a = b + 1.

ta phải chứng minh x4 + y4 - x2y2 \(\ge\)\(\frac{1}{9}\)hay a2 - 3b2 \(\ge\)\(\frac{1}{9}\)  (1)

thế a = b + 1 vào (1) ta được 9b2 - 9b - 4 \(\le\)0 hay (3b + 1)(3b - 4) \(\le\)0 hay \(\frac{-1}{3}\le b\le\frac{4}{3}\)

ta sẽ chứng minh \(\frac{-1}{3}\le b\le\frac{4}{3}\).

thật vậy

ta có x2 + y2\(\ge\)2xy nên từ giả thiết suy ra xy \(\le\) 1 hay b \(\le\)1 nên b \(\le\)\(\frac{4}{3}\)

mặt khác từ giả thiết ta có (x + y)2 - 3xy = 1 nên 3xy + 1  = (x + y)2\(\ge\)0 hay xy \(\ge\)\(\frac{-1}{3}\)hay b  \(\ge\)\(\frac{-1}{3}\)

từ đó suy ra đpcm.

chiến
Xem chi tiết