S=(1+1/2)+(1+2/2^2)+(1+3/2^3)+...+(1+2014/2^2014)
CM :S<2016
S=(1+1/2)+(1+1/22)+(1+3/23)+...+(1+2014/22014)
Chứng minh rằng S<2016
Cho S=(1+1 phần 2)+(1+2 phần 2 mũ 2)+(1+3 phần 2 mũ 3)+...+(1+2014 phàn 2 mũ 2014)
CMR S<2016
Tính tổng \(S=2014+\frac{2014}{1+2}+\frac{2014}{1+2+3}+\frac{2014}{1+2+3+4}\)\(+...+\frac{2014}{1+2+3+...+10000}\)
\(S=2014+\frac{2014}{1+2}+\frac{2014}{1+2+3}+...+\frac{2014}{1+2+3+...+10000}\)
\(S=\frac{2014}{\frac{1.2}{2}}+\frac{2014}{\frac{2.3}{2}}+\frac{2014}{\frac{3.4}{2}}+...+\frac{2014}{\frac{10000.10001}{2}}\)
\(S=\frac{4028}{1.2}+\frac{4028}{2.3}+\frac{4028}{3.4}+...+\frac{4028}{10000.10001}\)
\(S=4028\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10000.10001}\right)\)
\(S=4028\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{10001-10000}{10000.10001}\right)\)
\(S=4028\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10000}-\frac{1}{10001}\right)\)
\(S=4028\left(1-\frac{1}{10001}\right)=\frac{40280000}{10001}\)
Cho S=(1+1 phần 2)+(1+2 phần 2 mũ 2)+(1+3 phần 2 mũ 3)+...+(1+2014 phàn 2 mũ 2014)
CMR S<2016
a)1^2/1×2×2^2/2×3/3^2/3×4×...×999^2/999×1000
b)A=1/101+1/102+1/103+...+1/150. CM: 1/3 <A <1/2
c) So sánh: A= 2011+2012/2012+2013 và B=2011/2012+2012/2013
d) So sánh: S= 1/11+1/12+1/13+...+1/20 và 1/2
e) CM: 7/12<1/41+1/42+1/43+...+1/80 <1
f) So sánh: A= 2^2014+1/2^2014 và B= 2^2014+2/2^2014+1
g) Rút gọn: B= (1-1/2)×(1-1/3)×(1-1/4)×...×(1-1/20)
h) (1+1/2)×(1+1/3)+(1+1/4)×...×(1+1/99)
Các bạn chỉ cần làm những câu hỏi các bạn biết thôi nha. Mình đang cần gấp.
g: \(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{19}{20}=\dfrac{1}{20}\)
h: \(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot..\cdot\dfrac{100}{99}=\dfrac{100}{2}=50\)
f: \(A=1+\dfrac{1}{2^{2014}}\)
\(B=\dfrac{2^{2014}+1+1}{2^{2014}+1}=1+\dfrac{1}{2^{2014}+1}\)
mà \(2^{2014}< 2^{2014}+1\)
nên A>B
Cho S = 1/4+2/42+3/43+...+2014/42014
Chứng minh S < 1/2
So sánh:
S=1/4+2/4^2+3/4^3+..+2014/4^2014 với 1/2
=> 4.S = 1 + 4 2 + 4 3 + 4 4 + ... + 4 2014 => 4.S - S = 1 + 4 2 + 4 3 + 4 4 + ... + 4 2014 − 4 1 + 4 2 + 4 3 + ... + 4 2014 => 3.S = = 1 + 4 2 − 4 1 + 4 3 − 4 2 + 4 4 − 4 3 + ... + 4 2014 − 4 2013 − 4 2014 => 3.S = 1 + 4 1 + 4 1 + ... + 4 1 − 4 2014 Tính A= 1 + 4 1 + 4 1 + ... + 4 1 => 4.A = 4 + 1 + 4 1 + 4 1 + ... + 4 1 => 4.A - A = 4 − 4 1 => A= 3 4 − 3.4 1 4 1 2014 4 1 2014 4 Trả lời 3 Đánh dấu Cho tổng gồm 2014 số hạng: S= 1/4 + 2/4 2 + 3/4 3 + 4/4 4 + ... + 2014/4 2014 Chứng mih rằng: S < 1 2 3 2013 ( 2 3 2013 ) ( 2 3 2014 ) ( ) ( 2 2 ) ( 3 3 ) ( 2013 2013 ) 2014 2 2013 2014 2 2013
Cho S = 1/4 + 2/4^2 + 3/4^3 + . . . + 2014/4^2014
Chứng minh rằng : S < 1/2
Đang cần gấp :33
Cho S= 1+1/2+1/2^2+1/2^3+...+1/2^2013+1/2^2014.So sánh S và 2