1+x+y=căn bậc 2 x +căn bậc 2 xy +căn bậc 2 y
1+x+y= căn bậc 2 x + căn bậc 2 xy + căn bậc 2 y
(căn bậc 2 của x + 1)/(căn bậc 2 của xy + 1) + (căn bậc 2 của xy + căn bậc 2 của x)/( căn bậc 2 của xy - 1)-1 : (căn bậc 2 của x + 1)/(căn bậc 2 của xy + 1) - (căn bậc 2 của xy + căn bậc 2 của x)/( căn bậc 2 của xy - 1) + 1
căn bậc 2 của (x) +căn bậc 2 của (y)+căn bậc 2 của (z)=2 ; x+y+z=2 tính P= căn bậc 2 của ((x+1)(y+1)(z+1)) ((căn bậc 2 của (x) /(x+1))+(căn bậc 2 của (y) / (y+1))+(căn bậc 2 của (z) / (z+1))
căn bậc 2 của (x) +căn bậc 2 của (y)+căn bậc 2 của (z)=2 ; x+y+z=2 .tính P= căn bậc 2 của ((x+1)(y+1)(z+1)) ((căn bậc 2 của (x) /(x+1))+(căn bậc 2 của (y) / (y+1))+(căn bậc 2 của (z) / (z+1))
3) So sánh
a. x=căn bậc của 40+2 và y=căn bậc 40 + căn bậc 2
b. x=căn bậc 625 -1/5 và y=căn bậc 576 - 1/căn bậc 6 + 1
a) Ta có : \(x=\sqrt{40+2}=\sqrt{42}< \sqrt{49}=7\) (1)
\(y=\sqrt{40}+\sqrt{2}>\sqrt{36}+\sqrt{1}=6+1=7\) (2)
Từ (1) và (2) => x = y
b) Ta có : \(x=\sqrt{625}-\frac{1}{\sqrt{5}}=25-\frac{1}{\sqrt{5}}\) (1)
\(y=\sqrt{576}-\frac{1}{\sqrt{6}}+1=24-\frac{1}{\sqrt{6}}+1=25-\frac{1}{\sqrt{6}}\) (2)
Vì \(\sqrt{5}< \sqrt{6}\)nên \(\frac{1}{\sqrt{5}}>\frac{1}{\sqrt{6}}\)(3)
(1),(2),(3) => \(x>y\)
Mà Mun Già ơi, chỗ mà câu a đó, KL hình như sai rồi, từ (1) và (2) suy ra x<y chứ sao = nhau đc
Kim Miso nhầm,bạn sửa câu a,b đều là " < "nhé
So sánh căn bậc 2 của Q và Q
Biết Q= căn bậc 2 xy trên x-căn bậc 2 của xy -y
Tìm GTNN của:
1) A= căn bậc hai của(x+1) + căn bậc hai của(y-2) biết x+y=4
2) B= (căn bậc hai của(x-1)/x) + (căn bậc hai của(y-2)/y)
3) x + căn bậc hai của(2-x)
Cho căn[x^2+căn bậc 3(x^4y^2)] + căn[y^2+căn bậc 3(x^2y^4)] = a.?
C/m:căn bậc 3 của x^2 + căn bậc 3 của y^2 = căn bậc 3 của a^2
{x cộng y trừ căn bậc hai xy bằng 3{căn bậc hai x cộng 1 cộng căn bậc hai y cộng 1 bằng 4
Bạn ơi, bạn ghi lại đề đi bạn. Khó hiểu quá!
Đề là \(x+y-\sqrt{xy}=3\) với \(\sqrt{x+1}+\sqrt{y-1}=4\) pk bạn?
Điều kiện: \(\left\{{}\begin{matrix}xy>0\\x,y\ge-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\x+2+2\sqrt{\left(x+1\right)\left(y+1\right)}=16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\x+2+2\sqrt{xy+x+y+1}=16\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}S=x+y\\P=xy\end{matrix}\right.\) ( ĐK: \(S^2\ge4P\) ), khi đó hệ phương trình trở thành:
\(\left\{{}\begin{matrix}S-\sqrt{P}=3\\S+2+2\sqrt{S+P+1}=16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}P=\left(S-3\right)^2\left(S\ge3\right)\\2\sqrt{S+\left(S-3\right)^2+1}=14-S\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\le S\le14\\P=\left(3-S\right)^2\\4\left(S^2-5S+10\right)=196-28S+S^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\le S\le14\\P=\left(3-S\right)^2\\3S^2+8S-156=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}S=6\\P=9\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}x+y=6\\xy=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=6\\x^2-x+9=0\end{matrix}\right.\) \(\Leftrightarrow x=y=3\)
Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(3;3\right)\)