Cho biểu thức \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}\)
Cho biểu thức:
A = \(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}\)
Hãy chứng tỏ \(\frac{1}{2}\) < A < 1
\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{20}{40}=\frac{1}{2}\)
=>A>\(\frac{1}{2}\) (*)
Ta có:\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}< \frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{20}{20}=1\)
=>A<1 (**)
Từ (*) và (**) => \(\frac{1}{2}< A< 1\)
\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)
20 phân số 1/40
\(A>20x\frac{1}{40}=\frac{1}{2}\)
\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}< \frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)
20 phân số 1/20
\(A< 20x\frac{1}{20}=1\)
Chứng tỏ 1/2 < A < 1
\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}\)
Câu 5.
Cho biểu thức A = \(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}.\)
Chứng tỏ : \(\frac{1}{2}\) < A < 1
So sánh A với \(\frac{1}{3}\)
A = \(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+....+\frac{1}{40}\)
Từ 21,22,23,24,...,40 có 20 chữ số nên A gồm 20 chữ số
ta có : \(\frac{1}{21}>\frac{1}{60}\),\(\frac{1}{22}>\frac{1}{60}\), ...., \(\frac{1}{40}>\frac{1}{60}\)
\(\Rightarrow\)A \(>\)\(\frac{1}{60}.20\)= \(\frac{1}{3}\)
cho các biểu thức
A=\(\left(\frac{1}{8\cdot14}+\frac{1}{14\cdot20}+\frac{1}{20\cdot26}+...+\frac{1}{50\cdot56}\right)\)
\(B=\left(\frac{45}{12\cdot21}+\frac{45}{21\cdot30}+\frac{40}{24\cdot34}-\frac{40}{34\cdot44}-\frac{40}{44\cdot54}-\frac{40}{54\cdot64}\right)\)
Chứng minh rằng:\(\frac{A}{B}< \frac{1}{8}\)
Chứng minh:
\(\frac{7}{12}
gọi A=1/21+1/22+1/23+...+1/40
chia A thành 2 nhóm A1 và A2( A1+A2=A)
ta có A1=1/21+1/22+1/23+...+1/30>1/30+1/30+1/30+...+1/30(có 10 phân số 1/30)
A1>10/30=1/3(1)
ta có A2=1/31+1/32+1/33+...+1/40>1/40+1/40+1/40+...+1/40(có 10 phân số 1/40)
A2>10/40=1/4(2)
từ (1)và (2) suy ra
A1+A2>1/3+1/4
A>7/12(3)
ta có A1=1/21+1/22+1/23+...+1/20<1/20+1/20+1/20+...+1/20(có 10 phân số 1/20)
A1<10/20=1/2(4)
ta có A2=1/31+1/32+1/33+...+1/40<1/30+1/30+1/30+...+1/30(có 10 phân số 1/30)
A2<10/30=1/3(5)
từ (4)và (5) suy ra
A1+A2<1/2+1/3
A<5/6(6)
từ (3),(6) suy ra 7/12<1/21+1/22+1/23+...+1/40<5/6
cái A1+1/21+1/22+1/23+1/24+1/25+...+1/30<1/20+1/20+1/20+1/20+...+1/20 nhé
cho A =\(\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+.......+\frac{1}{40}\)cmr \(\frac{1}{2}\)<A<1
Chứng minh:
\(\frac{7}{12}<\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}<\frac{5}{6}\)
\(S=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+\frac{1}{25}+\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+\frac{1}{29}+\frac{1}{30}\)\(\frac{1}{30}\)
Hãy so sánh S với \(\frac{1}{3}\)
ta có 1/3=10/30
1/21+1/22+...+1/30 có 10 p/số
mà 1/21>1/30
1/22>1/30
....
1/29>1/30
1/30=1/30
=>1/21+..1/30>1/30+....1/30 có 10 phân số
=>1/21+...1/30>1/3
Ta có: \(\frac{1}{21}< \frac{1}{30}\)
\(\frac{1}{22}< \frac{1}{30}\)
......
\(\frac{1}{29}< \frac{1}{30}\)
\(\Rightarrow S< \frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\)(có 10 p/s)
\(\Rightarrow S< \frac{1}{30}.10=\frac{10}{30}=\frac{1}{3}\)
Vậy S < 1/3
ta co 1/21+1/22+1/23>3/30
1/24+1/25+1/26>3/30
1/27+1/28+1/29>3/30
==>S>3/30+3/30+3/30+1/30
S>10/30 hay S>1/3