Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tân Trác
Xem chi tiết
Quách Phương
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 2 2021 lúc 20:12

Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)

TH1: \(a;c\) trái dấu 

Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)

Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)

Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.

Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)

\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)

Mà a; c trái dấu nên:

- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)

\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)

\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu

\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)

Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)

Hồ Thị Hạnh
Xem chi tiết
Nguyễn Đình Mạnh
11 tháng 5 2017 lúc 17:58

@...65%,,7788*7.,......................

nói chung a >c

đúng ko

đúng ko

Nguyễn Thị Hà Trang
Xem chi tiết
Ham Eunjung
Xem chi tiết
an
20 tháng 4 2016 lúc 21:23

vì a+b+c=2012

4a-2b+c=2036

=>a-b=8

9a+3b+c=2036

4a-2b+c=2036

=>a+b=0

tu dieuf tren =>a=4

b=-4

cau tu cmnoots nhé 

huongkarry
Xem chi tiết
nguyen minh duc
8 tháng 5 2017 lúc 20:56

Vì x=1, x=-1 là ngiệm của đa thức f(x) nên

a.1^2+b.1+c=a.(-1)^2+b.(-1)+c=0                 

=>a+b+c=a-b+c=0                             (1)

=>b=-b

=>b=0

thay b=0 vào (1) ta có a+c=0

=>a và c là 2 số đối nhau

Nguyễn Phương Thảo
8 tháng 5 2017 lúc 20:59

k cho mình

Ti Khoa
Xem chi tiết
Vũ Như Mai
25 tháng 4 2017 lúc 15:40

Bạn vô câu hỏi tương tự xem nhé.

super xity
Xem chi tiết
Iruko
14 tháng 8 2015 lúc 15:41

a,a+b+c=0 <=>c=-a-b

Khi đ f(x)=ax^2+bx-a-b

f(x)=a(x^2-1)+b(x-1)=(x-1)(ax+a+b)

=>f(x) có nghiệm x=1

b,a-b+c=0 <=>c=b-a

Khi đó f(x)=ax^2+bx+b-a

f(x)=a(x^2-1)+b(x+1)=(x+1)(ax-a+b)

=>f(x) có nghiệm x=-1

 

Vic Lu
11 tháng 4 2017 lúc 19:37

a. Ta có: \(f\left(1\right)=a.1^2+b.1+c\)

\(f\left(1\right)=a+b+c\)

Mà theo đề bài có a+b+c=0

=>\(f\left(1\right)=0\)

x=1 là một nghiệm của đa thức f(x)

Phần b bạn làm tương tự nhé

super xity
Xem chi tiết