so sanh a= 2015^2014+1/2015^2014-1 va b= 2015^2014-1/2015^2014-3
1. So sanh:
2014×2015-2/2013+2013×2014 voi 2014×2015-1/2014×2015
2. Cho a, b, c thuoc N* va a nho hon b.
Hay chung to: a/b nho hon a+c/b+c va 1 nho hon a/a+b +b/b+c+c/a+c
so sanh a=2004^2016+1/2004^2015+1 va b=2004^2015+1/2004^2014+1
So sánh A=\(\frac{2014^{2015}+1}{2014^{2015}+1}\) va B=\(\frac{2014^{2014}+1}{2014^{2013}+1}\)
Ta có :
\(\frac{2014^{2015}+1}{2014^{2015}+1}\)\(=1\)
\(\frac{2014^{2014}+1}{2014^{2013}+1}\)\(>1\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
Khong qui dong mau hay so sang
A=2015^2013+1/2015^2014+1 va B=2015^2014+1/2015^2015+1
So sanh
A=2015^2015 + 1/ 2016^2016 + 1
B=2015^2014 + 1/ 2015^2015 + 1
Bạn lên mạng sear nha có đấy
So sánh 2 phân số : A=2015^2016+1/2015^2015+1 và B=2014^2015+1/2014^2014+1
So sánh
A=\(\frac{2015^{2014}+1}{2015^{2014}-1}\) B=\(\frac{2015^{2014}-1}{2015^{2014}-3}\)
CÁCH 1:
A=1và 2/2015^2014-1
B= 1và 2/2015^2014-3
Vì 1và 2/2015^2014-1 < 1và 2/2015^2014-3
Vậy A <B
CÁCH 2:
Ta biết: a/b>1=>a/b> a+n/b+n
B>1=> B= 2015^2014-1/2015^2014-3> 2015^2014-1+2/2015^2014-3+2=2015^2014+1/2015^2014-1=A
Vậy B>A
A=99^2015+1/99^2014+1
B=99^2014+1/99^2013+1
so sanh a va b
A = 99^2015 + 1/99^2014 + 1 < 99^2015 + 1 + 98 / 99^2014 + 1 + 98
= 99^2015 + 99 / 99^2014 + 99
= 99(99^2014 + 1) / 99(99^2013+1)
= 99^2014 + 1 / 99^2013 + 1 = B
=> A < B
so sanh a va b a=2014+2015/2015+2016vab=2015+2016/2016+2017
Giải:
Ta có:
\(A=\frac{2014+2015}{2015+2016}=\frac{2014+2015+2}{2015+2016}-\frac{2}{2015+2016}=2-\frac{2}{2015+2016}\)(1)
\(B=\frac{2015+2016}{2016+2017}=\frac{2015+2016+2}{2016+2017}-\frac{2}{2016+2017}=2-\frac{2}{2016+2017}\)(2)
Từ (1) và (2) ta có: \(A=2-\frac{2}{2015+2016}\)và \(B=2-\frac{2}{2016+2017}\)
Vì \(\frac{2}{2015+2016}>\frac{2}{2016+2017}\rightarrow2-\frac{2}{2015+2016}< 2-\frac{2}{2016+2017}\)
\(\Rightarrow A< B\)