Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễ đức phương nam
Xem chi tiết
Phúc Thành Pika
Xem chi tiết
Minh Tâm Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 6 2023 lúc 10:00

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Xét ΔCHM vuông tại H và ΔCKB vuông tại K có

góc HCM chung

=>ΔCHM đồng dạng với ΔCKB

=>CH/CK=CM/CB

=>CH*CB=CK*CM

hilluu :>
13 tháng 6 2023 lúc 13:50

giải

tự vẽ hình nha 

a, xét △ ABC và △ HBA có 

góc B chung

góc BHA = góc BAC = 90 độ

➜ △ABC ∼ △HBA (g.g)

b, xét △CHM và △CKB có

góc C chung

góc CHM = góc CKB 

➜ △CHM ∼ △CKB (g.g)

c, xét △DHB và △CKB có

góc B chung 

góc BKC = góc BHD =  90 độ 

➜ △DHB∼△CKB (g.g)

vì △DHB∼△CKB 

➜DH/CK = HB/KB = DB/CB

xét △BKH và △BCD có 

góc B chung 

HB/KB = DB/CB (CMT)

➜△BKH ∼ △BCD

vì △BKH ∼ △BCD nên góc BKH = góc BCD (hai góc tương ứng )

Nguyễn Thị Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 3 2021 lúc 22:15

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{CBA}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

anhquan2008
Xem chi tiết
Bảo Ngọc Phan Trần
Xem chi tiết
Bảo Ngọc Phan Trần
Xem chi tiết
Nguyễn Ngọc Quỳnh Như
Xem chi tiết
Ben 10
30 tháng 7 2017 lúc 21:07

1 phần thôi nhé

Nối BE, Gọi P là giao điểm của AD với BE.

Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).

Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)

Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)

Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác).  (4)

Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB

<=>  BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC  

<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5) 

    Chú ý: Ta cm được: CA=CD (biến đổi góc).

Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)

=> DpCm. 

Đào Thị Hải Yến
Xem chi tiết