cho tam giác ABC vuông tại A, đường cao AH cắt đường phân giác BK tại M chứng minh rằng MA.BH=MH.BA
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ đường phân giác BK của tam giác ABC (K thuộc AC), BK cắt AH tại E. Chứng minh : a) tam giác ABK~ tam giác HBE b) AK²= EH.KC
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ phân giác AD của tam giác CHA và đường phân giác BK của tam giác ABC. BK cắt AH, AD lần lượt tại E và F. Chứng minh
Cho tam giác ABC vuông tại A, đường cao AH
a) Chứng minh rằng: ∆ABC ∽ ∆HBA
b) Lấy điểm M thuộc AH. Kẻ đường thẳng B vuông góc với CM tại K. Chứng minh CM.CK=CH.CB
c) Tia BK cắt AH tại D. Chứng minh \(\widehat{BKH}=\widehat{BCD}\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: Xét ΔCHM vuông tại H và ΔCKB vuông tại K có
góc HCM chung
=>ΔCHM đồng dạng với ΔCKB
=>CH/CK=CM/CB
=>CH*CB=CK*CM
giải
tự vẽ hình nha
a, xét △ ABC và △ HBA có
góc B chung
góc BHA = góc BAC = 90 độ
➜ △ABC ∼ △HBA (g.g)
b, xét △CHM và △CKB có
góc C chung
góc CHM = góc CKB
➜ △CHM ∼ △CKB (g.g)
c, xét △DHB và △CKB có
góc B chung
góc BKC = góc BHD = 90 độ
➜ △DHB∼△CKB (g.g)
vì △DHB∼△CKB
➜DH/CK = HB/KB = DB/CB
xét △BKH và △BCD có
góc B chung
HB/KB = DB/CB (CMT)
➜△BKH ∼ △BCD
vì △BKH ∼ △BCD nên góc BKH = góc BCD (hai góc tương ứng )
cho tam giác ABC vuông tại A, đường cao AH
a/ chứng minh tam giác AHB đồng dạng tam giác CBA
b/ kẻ phân giác AD của tam giác CHA và đường phân giác BK của tam giác ABC, BK cắt AH và AD lần lượt tại E và F. Chứng minh tam giác AEF đồng dạng tam giác BEH
c/ KD//AH
d/ chứng minh EH/AB=KD/BC
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{CBA}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ đường phân giác AD của tam giácCHA và đường phân giác BK của tam giác ABC (D thuộc BC; K thuộc AC). BK cắt lần lượt AH và AD tại E và F.
a) Chứng minh: tam giác AHB đồng dạng với tam giác CHA.
b) Chứng minh:tam giác AEF đồng dạng tam giác BEH .
c) Chứng minh: KD // AH.
d) Chứng minh:EH/AB = KD/BC
GIÚP VỚI !!! ( CHỨNG MINH CHI TIẾT NHÉ )
Cho tam giác ABC (AB<AC) có 2 đường cao AH,BK cắt nhau tại I. Qua B kẻ đường thẳng vuông góc với AB cắt AH tại E. Kẻ phân giác AD của tam giác ABC. Chứng minh: IB/IE=AH/BK
Cho tam giác ABC (AB<AC) có 2 đường cao AH,BK cắt nhau tại I. Qua B kẻ đường thẳng vuông góc với AB cắt AH tại E
A. Chứng minh tam giác BIA đồng dạng tam giác HIK và BKH=HBE
B. Kẻ phân giác AD của tam giác ABC. Chứng minh :IB/IE=AH/BK
Cho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEH. AB>AC
1 phần thôi nhé
Nối BE, Gọi P là giao điểm của AD với BE.
Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).
Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)
Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)
Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác). (4)
Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB
<=> BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC
<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5)
Chú ý: Ta cm được: CA=CD (biến đổi góc).
Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)
=> DpCm.
Cho tam giác ABC vuông tại A, đường cao AH.a) Chứng minh: tam giác AHB ~ tam giác CHA.b) Kẻ đường phân giác AD của tam giác CHA và đường phân giác BK của tam giác ABC (D thuộc BC; K thuộc AC). BK cắt lần lượt AH và AD tại E và F. Chứng minh:tam giác AEF ∽ tam giác BEH .c) Chứng minh: KD // AH.d) Chứng minh: EH/AB =KD/BC