cho tam giác ABC vuông tại A. Đường cao AH , kẻ HE vuông góc với AB tại E. kẻ HF vuông góc với AC tại F C/M
a, AB.AE+AC.AF=2EF2
Cho tam giác ABC vuông tại A, đường cao AH. Biết HB= 3,6cm;HC=6,4cm.
a,Tính độ dài các đoạn thẳng:AB,AC,AH
B, Kẻ HE vuông góc với AB; HF vuông góc vớiAC. C/M : AB.AE=AC.AF
GIÚP MÌNH VS M.N ƠI~!!!!!!!!!!!!!!
Cho tam giác ABC vuông tại A, đường cao AH. Biết HB= 3,6cm;HC=6,4cm. a,Tính độ dài các đoạn thẳng:AB,AC,AH B, Kẻ HE vuông góc với AB; HF vuông góc vớiAC. C/M : AB.AE=AC.AF. c, M,N lần lượt là trung điểm của BH,HC chứng minh tứ giác MEFN là hình thang vuông
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc với AB tại E, Kẻ HF vuông góc với AC tại F. Chứng minh tứ giác BEFC nội tiếp
Gợi ý: A F E ^ = A H E ^ (tính chất hình chữ nhật và A H E ^ = A B H ^ (cùng phụ B H E ^ )
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc với AB tại E, Kẻ HF vuông góc với AC tại F. Chứng minh tứ giác BEFC nội tiếp.
Ta có: \(\widehat{C_1}=\widehat{A_1}\)(cùng phụ với \(\widehat{B_1}\)) \(\left(1\right)\)
Xét tứ giác AEHF có: \(\widehat{A}=\widehat{E}=\widehat{F}=\widehat{H}=90^o\)
=> tứ giác AEHF là h.c.n
=> \(\widehat{A_1}=\widehat{E_1}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{E_1}=\widehat{C_1}\)
vì \(\widehat{E_1}+\widehat{BEF}=180^o\)
\(\Rightarrow\widehat{C_1}+\widehat{BEF}=180^o\) mà 2 góc đối nhau
=> tứ giác BEFC nội tiếp
Cho tam giác ABC vuông tại A, đườnq cao AH. Biết HB = 3,6 cm HC = 6,4 cm.
a) Tính AB, AC,AH
b) Kẻ HE vuông góc AB, HF vuông góc AC. Chứnq minh AB.AE= AC.AF
a, áp dụng hệ thức lượng trong tam giác : AC^2 = HC.BC => AC = căn ( HC.BC) = 8 (cm )
AB^2 = HB.BC => AB = căn( HB.BC) = 6 ( cm )
AH.BC = AB.AC => AH = AB.AC : BC =4,8(cm)
b, Trong tam giác vuông HAB, đường cao HE ta có : HA^2 = AB.AE (1)
Trong tam giác vuông HAC, đường cao HF ta có : HA^2 = AC.AF (2)
Từ (1) và (2) ta có : AB.AE = AC.AF ( = AH^2) ( đpcm)
Hình em tự vẽ nhé
Cho tam giác ABC có AB=5, AC=12, BC=13
a)Chứng minh tam giác ABC vuông tại A và tính độ dài đường cao AH
b)Kẻ HE vuông góc AB tại E, HF vuông góc AC tại F. Chứng minh AB.AE=AF.AC
c)Chứng minh tam giác AEF và tam giác ABC đồng dạng
Với bài toán này, ta sử dụng hệ thức lượng trong tam giác.
a. Kiểm tra thấy \(AB^2+AC^2=BC^2\) nên tam giác ABC vuông tại A.
\(AH=\frac{AB.AC}{BC}=\frac{60}{13}\)
b. Áp dụng hệ thức lượng, ta thấy \(AB.EA=AH^2=AF.AC\)
c. Từ kết quả câu b và góc A vuông ta suy ra được \(\Delta AEF\sim\Delta ACB\left(c-g-c\right)\).
Cho tam giác ABC có AB=5, AC=12, BC=13
a)Chứng minh tam giác ABC vuông tại A và tính độ dài đường cao AH
b)Kẻ HE vuông góc AB tại E, HF vuông góc AC tại F. Chứng minh AB.AE=AF.AC
c)Chứng minh tam giác AEF và tam giác ABC đồng dạng
3.Tu HE vuong goc voi AB , HF vuong goc voi AC =>HEA =900 , HFA =900 va BAC =900=>tu giac EHFA la hinh chu nhat =>goc AEF=EAH ma EAH=ACH vi cung phu voi goc HAC =>Ta chung minh duoc EAF ~ ABC 2.=>\(\frac{AB}{AF}\)= \(\frac{AC}{AE}\)=>AB\(\times\)AE = AF\(\times\)AC
Cho tam giác ABC vuông tại A (AB < AC), có AH là đường cao. Kẻ HE vuông góc AB tại E, kẻ HF vuông góc AC tại F.
a)Chứng minh tứ giác AEHF là hình chữ nhật.
b)Lấy điểm M đối xứng với điểm A qua F. Chứng minh EF // HM.
c)Từ điểm M kẻ đường thẳng song song AH, đường thẳng này cắt tia HF tại N. Chứng minh tứ giác AHMN là hinh thoi.
Cho tam giác abc vuông tại a,bc=5cm,°C=30° a)giải tam giác vuông ABC. b)tính đường cao AH c)kẻ HE vuông góc AB TẠI E VÀ HF VUÔNG GÓC AC TẠI F CM :AH\3=BE.CF.BC cần gấp
Câu 15:
a: ĐKXĐ: x>=0; x<>1