cho tam giác ABC vuông tại A có đường cao AH
Tính Ah biết BH = 4cm và CH =9cm
Toán 8
1.Cho tam giác ABC vuông tại A. Gọi H là chân đường cao hạ từ A. Biết rằng AB = 7cm, AC = 9cm. Tính BH, CH, AH.
2. Cho tam giác ABC vuông tại A, đường cao AH. BH = 4cm, CH=9cm. Tính AH,AB,AC?
BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6
\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)
\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)
cho tam giác abc vuông tại a, đường cao ah biết bh=4cm, ch=9cm. tính bc, ah, ab, ac
BC=BH+CH=13cm
Xét ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC; AB^2=BH*BC; AC^2=CH*BC
=>\(AH=\sqrt{4\cdot9}=6\left(cm\right);AB=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right);AC=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\)
1/ Cho tam giác ABC vuông tại A có đường cao AH và đường trung tuyến AM
a/ Chứng minh AH2 = BH . CH
b/ Tính diện tích tam giác AMH , biết BH = 4cm , CH = 9cm
a,
Xét Δ AHB và Δ CAB, có :
\(\widehat{AHB}=\widehat{CAB}=90^o\)
\(\widehat{ABH}=\widehat{CBA}\) (góc chung)
=> Δ AHB ∾ Δ CAB (g.g)
=> \(\dfrac{AH}{CA}=\dfrac{HB}{AB}\)
=> \(\dfrac{AB}{CA}=\dfrac{HB}{AH}\)
Xét Δ AHB và Δ CHA, có :
\(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\dfrac{AB}{CA}=\dfrac{HB}{AH}\) (cmt)
=> Δ AHB ∾ Δ CHA (g.g)
=> \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)
=> \(AH^2=HB.CH\)
b, Ta có : \(AH^2=BH.CH\) (cmt)
=> \(AH^2=4.9\)
=> \(AH^2=36\)
=> AH = 6
Xét Δ AHB, có :
\(AB^2=AH^2+BH^2\)
=> \(AB^2=6^2+4^2\)
=> \(AB^2=52\)
=> AB = 7,2 (cm)
Xét Δ AHC, có :
\(AC^2=AH^2+CH^2\)
=> \(AC^2=6^2+9^2\)
=> \(AC^2=117\)
=> AC = 10,8 (cm)
Xét Δ ABC, có :
\(BC^2=AB^2+AC^2\)
=> \(BC^2=7,2^2+10,8^2\)
=> \(BC^2=168,48\)
=> BC = 12,9 (cm)
Ta có : MC = \(\dfrac{1}{2}BC\) (M là trung điểm BC do có đường trung tuyến AM)
=> MC = 6,45 (cm)
Ta có : BC = BH + HM + MC
=> 12,9 = 4 + HM + 6,45
=> HM = 12,9 - 4 - 6,45
=> HM = 2,45 (cm)
Xét Δ AMH vuông tại H, có :
\(S_{\Delta AMH}=\dfrac{1}{2}AH.HM\)
=> \(S_{\Delta AMH}=\dfrac{1}{2}.6.2,45\)
=> \(S_{\Delta AMH}=7,35\left(cm\right)\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH= 4cm, CH= 9cm.
a) Tính độ dài đường cao AH và A B C ⏜ của tam giác ABC.
b) Vẽ đường trung tuyến AM M ∈ B C của tam giác ABC, tính AM và diện tích tam giác AHM
a , Δ A B C , A ⏜ = 90 0 , A H ⊥ B C g t ⇒ A H = B H . C H = 4.9 = 6 c m Δ A B H , H ⏜ = 90 0 g t ⇒ tan B = A H B H = 6 4 ⇒ B ⏜ ≈ 56 , 3 0 b , Δ A B C , A ⏜ = 90 0 , M B = M C g t ⇒ A M = 1 2 B C = 1 2 .13 = 6 , 5 c m S Δ A H M = 1 2 M H . A H = 1 2 .2 , 5.6 = 7 , 5 c m 2
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH=4cm, CH=9cm. Độ dài đường cao AH là?
Theo HTL:
AH2 = HB . HC
= 4 . 9
= 36
AH = 6 cm
cho tam giác ABC vuông tại A, có đường cao AH; BH = 4cm, CH= 9cm. Từ H kẻ HD vuông góc AB, HE vuông góc AC.
a. Tính AH
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4cm, CH = 9cm
a) Tính độ dài đường cao AH và góc ABC của tam giác ABC
b) Vẽ đường trung tuyến AM, ( M thuộc BC ) của tam giác ABC. Tính AM và diện tích của tam giác AHM
Tam giác vuông ABC (A = 90 0 ) có đường cao AH và trung tuyến AM. Tính diện tích tam giác AMH,biết rằng BH = 4cm, CH = 9cm
Xét hai tam giác vuông HBA,HAC có:
∠ (BHA) = ∠ (AHC) = 90 0
∠ B = ∠ (HAC) (hai góc cùng phụ ∠ C )
⇒ △ HBA đồng dạng △ HAC (g.g)
Suy ra:
⇒ H A 2 = HB.HC = 4.9 = 36(cm)
Suy ra: AH = 6(cm)
Lại có: BM = 1/2 BC = 1/2 .(9+4) = 1/2 .13 = 6,5cm
Mà HM = BM – BH = 6,5 – 4 = 2,5cm
Vậy S A H M = 1/2 AH.HN = 1/2 .6.2,5 = 7,5 c m 2
Toán lớp 9: Hình học
cho tam giac ABC vuông tại A đường cao AH biết AH= 9cm, BH= 4cm. Tìm CH, BC. AB, AC
Áp dụng hệ thức lượng trong tam giác vuông ABC vuông tại A có :
\(\hept{\begin{cases}AH^2=BH.CH\\AB^2=BH.BC\\AC^2=CH.BC\end{cases}}\) \(\Rightarrow\hept{\begin{cases}9^2=4\cdot CH\\AB^2=4.BC\\AC^2=CH.BC\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}CH=\frac{81}{4}\Rightarrow BC=\frac{81}{4}+4=\frac{97}{4}\\AB^2=4\cdot\frac{97}{4}\\AC^2=\frac{81}{4}\cdot\frac{97}{4}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}AB=\sqrt{97}\left(cm\right)\\AC=\frac{9\sqrt{97}}{4}\left(cm\right)\end{cases}}\)
xét tam giác ABC vuông tại A(AH đường cao)
AH^2 = BH.HC(hệ thức lượng trong tam giác)
thay số: 9^2 = 4.HC
81 = 4.HC
HC= 20,25(cm)
mà HC+BH=BC
thay số: 20,25+4=BC
suy ra BC=24,25(cm)
xét tam giác BHA vuông tại H,ta có:
BA^2=BH^2+HA^2(định lí pytago)
thay số: BA^2=16+81
BA^2=97
BA=căn bậc 97(cm)
xét tam giác ABC vuông tại A
BC^2=BA^2+AC^2(định lí pytago)
thay số: 588,0625=13+AC^2
AC^2=575,0625
AC=23,9804608(cm)
hmu hmu sao nhìn số nó xấu zay :(
Cho tam giác abc vuông tại a,đường cao ah đường trung tuyến am.tính diện tích của tam giác amh biết bh=4cm,ch=9cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=BH\cdot CH\)
\(\Leftrightarrow AH^2=4\cdot9=36\)
hay AH=6(cm)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=4+9=13(cm)
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{1}{2}BC\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
hay \(AM=\dfrac{1}{2}\cdot13=6.5\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAMH vuông tại H, ta được:
\(AM^2=AH^2+MH^2\)
\(\Leftrightarrow MH^2=AM^2-AH^2=6.5^2-6^2=6.25\)
hay MH=2,5(cm)
Diện tích tam giác AMH là:
\(S_{AMH}=\dfrac{AH\cdot HM}{2}=\dfrac{6\cdot2.5}{2}=\dfrac{15}{2}=7.5\left(cm^2\right)\)