a) Xét ΔABH và ΔCBA có:
\(\widehat{CAB}=\widehat{AHB}\)\(=90^0\)
\(\widehat{B}\): chung
=> ΔABH∼ΔCBA (g.g)
=> \(\widehat{BAH}=\widehat{ACB}\)
Xét ΔAHB và ΔCHA có:
\(\widehat{BHA}=\widehat{CHA}\)\(=90^0\)
\(\widehat{BAH}=\widehat{ACB}\) (cmtrn)
=> ΔAHB∼ΔCHA (g.g)
=> \(\frac{AH}{CH}=\frac{HB}{AH}\)
<=> \(\frac{AH}{9}=\frac{4}{AH}\)
<=> AH2=36 (cm)
<=> AH=6 (cm)