Tam giác đồng dạng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
vũ đăng khánh

cho tam giác ABC vuông tại A , đường cao AH , P và Q lần lượt là trung điểm của BH và AH . CM : tam giác ABP đồng dạng tam giác CAQ,AP VUÔNG GÓC VỚI CQ

 

Hà Đức Anh
30 tháng 3 2021 lúc 15:57

                               Bài giải

a) Xét tam giác ABH và CAH có:

  \(\widehat{AHB}=\widehat{CHA}\left(=90^o\right)\)

\(\widehat{BAH}=\widehat{ACH}\left(=90^o-\widehat{ABC}\right)\)
\(\Rightarrow\Delta ABH\infty\Delta CAH\left(g.g\right)\)

 \(\Delta ABH\infty\Delta CAH\left(g.g\right)\) (câu a)  \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BH}{AH}=\dfrac{BH\text{ : }2}{AH\text{ : 2}}=\dfrac{BP}{AQ}\)

Xét \(\Delta ABP \text{và }\Delta CAQ\) có: BPAQ=ABAC

                                        \(\widehat{CAH}=\widehat{ABH}\left(=90^o-\widehat{BAH}\right)\)

\(\Rightarrow\Delta ABP\infty\Delta CAQ\left(c.g.c\right)\)

b, Ta có: PQ là đg trung bình của\(\Delta ABH\Rightarrow\text{ }PQ\text{ // }AB\text{ }\Rightarrow\text{ }PQ\perp AC\)  

Mà AHPC  => Q là trực tâm của \(\Delta APC\)

\(\Rightarrow\text{ }AP\perp CQ\)


Các câu hỏi tương tự
vũ đăng khánh
Xem chi tiết
vũ đăng khánh
Xem chi tiết
Trương Ngọc Hân
Xem chi tiết
Gojo Satoru
Xem chi tiết
Hai Dang Tran
Xem chi tiết
joss nguyễn
Xem chi tiết
Hue Pham
Xem chi tiết
Nguyễn Thị Phương
Xem chi tiết
Diệu Ân
Xem chi tiết